ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem Unicode version

Theorem exp3vallem 10456
Description: Lemma for exp3val 10457. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a  |-  ( ph  ->  A  e.  CC )
exp3vallem.ap  |-  ( ph  ->  A #  0 )
exp3vallem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
exp3vallem  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )

Proof of Theorem exp3vallem
Dummy variables  k  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2  |-  ( ph  ->  N  e.  NN )
2 fveq2 5486 . . . . 5  |-  ( w  =  1  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) )
32breq1d 3992 . . . 4  |-  ( w  =  1  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) #  0 ) )
43imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 ) #  0 ) ) )
5 fveq2 5486 . . . . 5  |-  ( w  =  k  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) )
65breq1d 3992 . . . 4  |-  ( w  =  k  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) #  0 ) )
76imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 ) ) )
8 fveq2 5486 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) )
98breq1d 3992 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) )
109imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 ) ) )
11 fveq2 5486 . . . . 5  |-  ( w  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
1211breq1d 3992 . . . 4  |-  ( w  =  N  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) #  0 ) )
1312imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) #  0 ) ) )
14 1zzd 9218 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
15 exp3vallem.a . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
16 elnnuz 9502 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
1716biimpri 132 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  NN )
18 fvconst2g 5699 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
1915, 17, 18syl2an 287 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  =  A )
2015adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  A  e.  CC )
2119, 20eqeltrd 2243 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
22 mulcl 7880 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2322adantl 275 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
2414, 21, 23seq3-1 10395 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  ( ( NN  X.  { A } ) `  1
) )
25 1nn 8868 . . . . . 6  |-  1  e.  NN
26 fvconst2g 5699 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2715, 25, 26sylancl 410 . . . . 5  |-  ( ph  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2824, 27eqtrd 2198 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  A )
29 exp3vallem.ap . . . 4  |-  ( ph  ->  A #  0 )
3028, 29eqbrtrd 4004 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
) #  0 )
31 nnuz 9501 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3216, 21sylan2b 285 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x
)  e.  CC )
3331, 14, 32, 23seqf 10396 . . . . . . . . . 10  |-  ( ph  ->  seq 1 (  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
3433adantl 275 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
35 simpl 108 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  NN )
3634, 35ffvelrnd 5621 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  e.  CC )
3736adantr 274 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k )  e.  CC )
3815ad2antlr 481 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A  e.  CC )
39 simpr 109 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k ) #  0 )
4029ad2antlr 481 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A #  0 )
4137, 38, 39, 40mulap0d 8555 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  A
) #  0 )
42 elnnuz 9502 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4342biimpi 119 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  ( ZZ>= `  1 )
)
4443adantr 274 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  ( ZZ>= `  1 )
)
4521adantll 468 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
4622adantl 275 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  x.  y )  e.  CC )
4744, 45, 46seq3p1 10397 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  ( ( NN  X.  { A } ) `  (
k  +  1 ) ) ) )
4835peano2nnd 8872 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ph )  ->  ( k  +  1 )  e.  NN )
49 fvconst2g 5699 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5015, 48, 49syl2an2 584 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  ( ( NN  X.  { A }
) `  ( k  +  1 ) )  =  A )
5150oveq2d 5858 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  (
( NN  X.  { A } ) `  (
k  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5247, 51eqtrd 2198 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5352breq1d 3992 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5453adantr 274 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5541, 54mpbird 166 . . . . 5  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 )
5655exp31 362 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
5756a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( ph  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
584, 7, 10, 13, 30, 57nnind 8873 . 2  |-  ( N  e.  NN  ->  ( ph  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) #  0 ) )
591, 58mpcom 36 1  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {csn 3576   class class class wbr 3982    X. cxp 4602   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   # cap 8479   NNcn 8857   ZZ>=cuz 9466    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  exp3val  10457
  Copyright terms: Public domain W3C validator