| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp3vallem | Unicode version | ||
| Description: Lemma for exp3val 10686. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| exp3vallem.a |
|
| exp3vallem.ap |
|
| exp3vallem.n |
|
| Ref | Expression |
|---|---|
| exp3vallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3vallem.n |
. 2
| |
| 2 | fveq2 5576 |
. . . . 5
| |
| 3 | 2 | breq1d 4054 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | fveq2 5576 |
. . . . 5
| |
| 6 | 5 | breq1d 4054 |
. . . 4
|
| 7 | 6 | imbi2d 230 |
. . 3
|
| 8 | fveq2 5576 |
. . . . 5
| |
| 9 | 8 | breq1d 4054 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | fveq2 5576 |
. . . . 5
| |
| 12 | 11 | breq1d 4054 |
. . . 4
|
| 13 | 12 | imbi2d 230 |
. . 3
|
| 14 | 1zzd 9399 |
. . . . . 6
| |
| 15 | exp3vallem.a |
. . . . . . . 8
| |
| 16 | elnnuz 9685 |
. . . . . . . . 9
| |
| 17 | 16 | biimpri 133 |
. . . . . . . 8
|
| 18 | fvconst2g 5798 |
. . . . . . . 8
| |
| 19 | 15, 17, 18 | syl2an 289 |
. . . . . . 7
|
| 20 | 15 | adantr 276 |
. . . . . . 7
|
| 21 | 19, 20 | eqeltrd 2282 |
. . . . . 6
|
| 22 | mulcl 8052 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 14, 21, 23 | seq3-1 10607 |
. . . . 5
|
| 25 | 1nn 9047 |
. . . . . 6
| |
| 26 | fvconst2g 5798 |
. . . . . 6
| |
| 27 | 15, 25, 26 | sylancl 413 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2238 |
. . . 4
|
| 29 | exp3vallem.ap |
. . . 4
| |
| 30 | 28, 29 | eqbrtrd 4066 |
. . 3
|
| 31 | nnuz 9684 |
. . . . . . . . . . 11
| |
| 32 | 16, 21 | sylan2b 287 |
. . . . . . . . . . 11
|
| 33 | 31, 14, 32, 23 | seqf 10609 |
. . . . . . . . . 10
|
| 34 | 33 | adantl 277 |
. . . . . . . . 9
|
| 35 | simpl 109 |
. . . . . . . . 9
| |
| 36 | 34, 35 | ffvelcdmd 5716 |
. . . . . . . 8
|
| 37 | 36 | adantr 276 |
. . . . . . 7
|
| 38 | 15 | ad2antlr 489 |
. . . . . . 7
|
| 39 | simpr 110 |
. . . . . . 7
| |
| 40 | 29 | ad2antlr 489 |
. . . . . . 7
|
| 41 | 37, 38, 39, 40 | mulap0d 8731 |
. . . . . 6
|
| 42 | elnnuz 9685 |
. . . . . . . . . . . 12
| |
| 43 | 42 | biimpi 120 |
. . . . . . . . . . 11
|
| 44 | 43 | adantr 276 |
. . . . . . . . . 10
|
| 45 | 21 | adantll 476 |
. . . . . . . . . 10
|
| 46 | 22 | adantl 277 |
. . . . . . . . . 10
|
| 47 | 44, 45, 46 | seq3p1 10610 |
. . . . . . . . 9
|
| 48 | 35 | peano2nnd 9051 |
. . . . . . . . . . 11
|
| 49 | fvconst2g 5798 |
. . . . . . . . . . 11
| |
| 50 | 15, 48, 49 | syl2an2 594 |
. . . . . . . . . 10
|
| 51 | 50 | oveq2d 5960 |
. . . . . . . . 9
|
| 52 | 47, 51 | eqtrd 2238 |
. . . . . . . 8
|
| 53 | 52 | breq1d 4054 |
. . . . . . 7
|
| 54 | 53 | adantr 276 |
. . . . . 6
|
| 55 | 41, 54 | mpbird 167 |
. . . . 5
|
| 56 | 55 | exp31 364 |
. . . 4
|
| 57 | 56 | a2d 26 |
. . 3
|
| 58 | 4, 7, 10, 13, 30, 57 | nnind 9052 |
. 2
|
| 59 | 1, 58 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-seqfrec 10593 |
| This theorem is referenced by: exp3val 10686 |
| Copyright terms: Public domain | W3C validator |