ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem Unicode version

Theorem exp3vallem 10523
Description: Lemma for exp3val 10524. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a  |-  ( ph  ->  A  e.  CC )
exp3vallem.ap  |-  ( ph  ->  A #  0 )
exp3vallem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
exp3vallem  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )

Proof of Theorem exp3vallem
Dummy variables  k  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2  |-  ( ph  ->  N  e.  NN )
2 fveq2 5517 . . . . 5  |-  ( w  =  1  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) )
32breq1d 4015 . . . 4  |-  ( w  =  1  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) #  0 ) )
43imbi2d 230 . . 3  |-  ( w  =  1  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 ) #  0 ) ) )
5 fveq2 5517 . . . . 5  |-  ( w  =  k  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) )
65breq1d 4015 . . . 4  |-  ( w  =  k  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) #  0 ) )
76imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 ) ) )
8 fveq2 5517 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) )
98breq1d 4015 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) )
109imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 ) ) )
11 fveq2 5517 . . . . 5  |-  ( w  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
1211breq1d 4015 . . . 4  |-  ( w  =  N  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) #  0 ) )
1312imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) #  0 ) ) )
14 1zzd 9282 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
15 exp3vallem.a . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
16 elnnuz 9566 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
1716biimpri 133 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  NN )
18 fvconst2g 5732 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
1915, 17, 18syl2an 289 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  =  A )
2015adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  A  e.  CC )
2119, 20eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
22 mulcl 7940 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2322adantl 277 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
2414, 21, 23seq3-1 10462 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  ( ( NN  X.  { A } ) `  1
) )
25 1nn 8932 . . . . . 6  |-  1  e.  NN
26 fvconst2g 5732 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2715, 25, 26sylancl 413 . . . . 5  |-  ( ph  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2824, 27eqtrd 2210 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  A )
29 exp3vallem.ap . . . 4  |-  ( ph  ->  A #  0 )
3028, 29eqbrtrd 4027 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
) #  0 )
31 nnuz 9565 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3216, 21sylan2b 287 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x
)  e.  CC )
3331, 14, 32, 23seqf 10463 . . . . . . . . . 10  |-  ( ph  ->  seq 1 (  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
3433adantl 277 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
35 simpl 109 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  NN )
3634, 35ffvelcdmd 5654 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  e.  CC )
3736adantr 276 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k )  e.  CC )
3815ad2antlr 489 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A  e.  CC )
39 simpr 110 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k ) #  0 )
4029ad2antlr 489 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A #  0 )
4137, 38, 39, 40mulap0d 8617 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  A
) #  0 )
42 elnnuz 9566 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4342biimpi 120 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  ( ZZ>= `  1 )
)
4443adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  ( ZZ>= `  1 )
)
4521adantll 476 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
4622adantl 277 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  x.  y )  e.  CC )
4744, 45, 46seq3p1 10464 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  ( ( NN  X.  { A } ) `  (
k  +  1 ) ) ) )
4835peano2nnd 8936 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ph )  ->  ( k  +  1 )  e.  NN )
49 fvconst2g 5732 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5015, 48, 49syl2an2 594 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  ( ( NN  X.  { A }
) `  ( k  +  1 ) )  =  A )
5150oveq2d 5893 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  (
( NN  X.  { A } ) `  (
k  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5247, 51eqtrd 2210 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5352breq1d 4015 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5453adantr 276 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5541, 54mpbird 167 . . . . 5  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 )
5655exp31 364 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
5756a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( ph  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
584, 7, 10, 13, 30, 57nnind 8937 . 2  |-  ( N  e.  NN  ->  ( ph  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) #  0 ) )
591, 58mpcom 36 1  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {csn 3594   class class class wbr 4005    X. cxp 4626   -->wf 5214   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818   # cap 8540   NNcn 8921   ZZ>=cuz 9530    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  exp3val  10524
  Copyright terms: Public domain W3C validator