ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem Unicode version

Theorem exp3vallem 10757
Description: Lemma for exp3val 10758. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a  |-  ( ph  ->  A  e.  CC )
exp3vallem.ap  |-  ( ph  ->  A #  0 )
exp3vallem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
exp3vallem  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )

Proof of Theorem exp3vallem
Dummy variables  k  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2  |-  ( ph  ->  N  e.  NN )
2 fveq2 5626 . . . . 5  |-  ( w  =  1  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) )
32breq1d 4092 . . . 4  |-  ( w  =  1  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 1 ) #  0 ) )
43imbi2d 230 . . 3  |-  ( w  =  1  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 ) #  0 ) ) )
5 fveq2 5626 . . . . 5  |-  ( w  =  k  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) )
65breq1d 4092 . . . 4  |-  ( w  =  k  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k ) #  0 ) )
76imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 ) ) )
8 fveq2 5626 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) )
98breq1d 4092 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) )
109imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 ) ) )
11 fveq2 5626 . . . . 5  |-  ( w  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
1211breq1d 4092 . . . 4  |-  ( w  =  N  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 w ) #  0  <-> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) #  0 ) )
1312imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  w ) #  0 )  <-> 
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) #  0 ) ) )
14 1zzd 9469 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
15 exp3vallem.a . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
16 elnnuz 9755 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
1716biimpri 133 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  NN )
18 fvconst2g 5852 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
1915, 17, 18syl2an 289 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  =  A )
2015adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  A  e.  CC )
2119, 20eqeltrd 2306 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
22 mulcl 8122 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2322adantl 277 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
2414, 21, 23seq3-1 10679 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  ( ( NN  X.  { A } ) `  1
) )
25 1nn 9117 . . . . . 6  |-  1  e.  NN
26 fvconst2g 5852 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2715, 25, 26sylancl 413 . . . . 5  |-  ( ph  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2824, 27eqtrd 2262 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
)  =  A )
29 exp3vallem.ap . . . 4  |-  ( ph  ->  A #  0 )
3028, 29eqbrtrd 4104 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
) #  0 )
31 nnuz 9754 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3216, 21sylan2b 287 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x
)  e.  CC )
3331, 14, 32, 23seqf 10681 . . . . . . . . . 10  |-  ( ph  ->  seq 1 (  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
3433adantl 277 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
35 simpl 109 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  NN )
3634, 35ffvelcdmd 5770 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  e.  CC )
3736adantr 276 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k )  e.  CC )
3815ad2antlr 489 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A  e.  CC )
39 simpr 110 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  k ) #  0 )
4029ad2antlr 489 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  A #  0 )
4137, 38, 39, 40mulap0d 8801 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  A
) #  0 )
42 elnnuz 9755 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4342biimpi 120 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  ( ZZ>= `  1 )
)
4443adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  ( ZZ>= `  1 )
)
4521adantll 476 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  x )  e.  CC )
4622adantl 277 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  x.  y )  e.  CC )
4744, 45, 46seq3p1 10682 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  ( ( NN  X.  { A } ) `  (
k  +  1 ) ) ) )
4835peano2nnd 9121 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ph )  ->  ( k  +  1 )  e.  NN )
49 fvconst2g 5852 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5015, 48, 49syl2an2 596 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ph )  ->  ( ( NN  X.  { A }
) `  ( k  +  1 ) )  =  A )
5150oveq2d 6016 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k )  x.  (
( NN  X.  { A } ) `  (
k  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5247, 51eqtrd 2262 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ph )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  k
)  x.  A ) )
5352breq1d 4092 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5453adantr 276 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0  <->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 k )  x.  A ) #  0 ) )
5541, 54mpbird 167 . . . . 5  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  ( k  +  1 ) ) #  0 )
5655exp31 364 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
5756a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  k ) #  0 )  ->  ( ph  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( k  +  1 ) ) #  0 ) ) )
584, 7, 10, 13, 30, 57nnind 9122 . 2  |-  ( N  e.  NN  ->  ( ph  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) #  0 ) )
591, 58mpcom 36 1  |-  ( ph  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {csn 3666   class class class wbr 4082    X. cxp 4716   -->wf 5313   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000   # cap 8724   NNcn 9106   ZZ>=cuz 9718    seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665
This theorem is referenced by:  exp3val  10758
  Copyright terms: Public domain W3C validator