Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3vallem Unicode version

Theorem exp3vallem 10287
 Description: Lemma for exp3val 10288. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Hypotheses
Ref Expression
exp3vallem.a
exp3vallem.ap #
exp3vallem.n
Assertion
Ref Expression
exp3vallem #

Proof of Theorem exp3vallem
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp3vallem.n . 2
2 fveq2 5414 . . . . 5
32breq1d 3934 . . . 4 # #
43imbi2d 229 . . 3 # #
5 fveq2 5414 . . . . 5
65breq1d 3934 . . . 4 # #
76imbi2d 229 . . 3 # #
8 fveq2 5414 . . . . 5
98breq1d 3934 . . . 4 # #
109imbi2d 229 . . 3 # #
11 fveq2 5414 . . . . 5
1211breq1d 3934 . . . 4 # #
1312imbi2d 229 . . 3 # #
14 1zzd 9074 . . . . . 6
15 exp3vallem.a . . . . . . . 8
16 elnnuz 9355 . . . . . . . . 9
1716biimpri 132 . . . . . . . 8
18 fvconst2g 5627 . . . . . . . 8
1915, 17, 18syl2an 287 . . . . . . 7
2015adantr 274 . . . . . . 7
2119, 20eqeltrd 2214 . . . . . 6
22 mulcl 7740 . . . . . . 7
2322adantl 275 . . . . . 6
2414, 21, 23seq3-1 10226 . . . . 5
25 1nn 8724 . . . . . 6
26 fvconst2g 5627 . . . . . 6
2715, 25, 26sylancl 409 . . . . 5
2824, 27eqtrd 2170 . . . 4
29 exp3vallem.ap . . . 4 #
3028, 29eqbrtrd 3945 . . 3 #
31 nnuz 9354 . . . . . . . . . . 11
3216, 21sylan2b 285 . . . . . . . . . . 11
3331, 14, 32, 23seqf 10227 . . . . . . . . . 10
3433adantl 275 . . . . . . . . 9
35 simpl 108 . . . . . . . . 9
3634, 35ffvelrnd 5549 . . . . . . . 8
3736adantr 274 . . . . . . 7 #
3815ad2antlr 480 . . . . . . 7 #
39 simpr 109 . . . . . . 7 # #
4029ad2antlr 480 . . . . . . 7 # #
4137, 38, 39, 40mulap0d 8412 . . . . . 6 # #
42 elnnuz 9355 . . . . . . . . . . . 12
4342biimpi 119 . . . . . . . . . . 11
4443adantr 274 . . . . . . . . . 10
4521adantll 467 . . . . . . . . . 10
4622adantl 275 . . . . . . . . . 10
4744, 45, 46seq3p1 10228 . . . . . . . . 9
4835peano2nnd 8728 . . . . . . . . . . 11
49 fvconst2g 5627 . . . . . . . . . . 11
5015, 48, 49syl2an2 583 . . . . . . . . . 10
5150oveq2d 5783 . . . . . . . . 9
5247, 51eqtrd 2170 . . . . . . . 8
5352breq1d 3934 . . . . . . 7 # #
5453adantr 274 . . . . . 6 # # #
5541, 54mpbird 166 . . . . 5 # #
5655exp31 361 . . . 4 # #
5756a2d 26 . . 3 # #
584, 7, 10, 13, 30, 57nnind 8729 . 2 #
591, 58mpcom 36 1 #
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1331   wcel 1480  csn 3522   class class class wbr 3924   cxp 4532  wf 5114  cfv 5118  (class class class)co 5767  cc 7611  cc0 7613  c1 7614   caddc 7616   cmul 7618   # cap 8336  cn 8713  cuz 9319   cseq 10211 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212 This theorem is referenced by:  exp3val  10288
 Copyright terms: Public domain W3C validator