| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodrbdclem | Unicode version | ||
| Description: Lemma for prodrbdc 11856. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.) |
| Ref | Expression |
|---|---|
| prodmo.1 |
|
| prodmo.2 |
|
| prodrbdc.dc |
|
| prodrb.3 |
|
| Ref | Expression |
|---|---|
| prodrbdclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullid 8069 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | 1cnd 8087 |
. 2
| |
| 4 | prodrb.3 |
. . 3
| |
| 5 | 4 | adantr 276 |
. 2
|
| 6 | eluzelz 9656 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | prodrbdc.dc |
. . . . . . . . 9
| |
| 9 | exmiddc 837 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | iftrue 3575 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . . . 12
|
| 13 | prodmo.2 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | eqeltrd 2281 |
. . . . . . . . . . 11
|
| 15 | 14 | ex 115 |
. . . . . . . . . 10
|
| 16 | iffalse 3578 |
. . . . . . . . . . . 12
| |
| 17 | ax-1cn 8017 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | eqeltrdi 2295 |
. . . . . . . . . . 11
|
| 19 | 18 | a1i 9 |
. . . . . . . . . 10
|
| 20 | 15, 19 | jaod 718 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 10, 21 | mpd 13 |
. . . . . . 7
|
| 23 | 22 | ralrimiva 2578 |
. . . . . 6
|
| 24 | nfcv 2347 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2358 |
. . . . . . . . 9
|
| 26 | nfcsb1v 3125 |
. . . . . . . . 9
| |
| 27 | nfcv 2347 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | nfif 3598 |
. . . . . . . 8
|
| 29 | 28 | nfel1 2358 |
. . . . . . 7
|
| 30 | eleq1 2267 |
. . . . . . . . 9
| |
| 31 | csbeq1a 3101 |
. . . . . . . . 9
| |
| 32 | 30, 31 | ifbieq1d 3592 |
. . . . . . . 8
|
| 33 | 32 | eleq1d 2273 |
. . . . . . 7
|
| 34 | 29, 33 | rspc 2870 |
. . . . . 6
|
| 35 | 4, 23, 34 | sylc 62 |
. . . . 5
|
| 36 | 35 | adantr 276 |
. . . 4
|
| 37 | prodmo.1 |
. . . . 5
| |
| 38 | 24, 28, 32, 37 | fvmptf 5671 |
. . . 4
|
| 39 | 7, 36, 38 | syl2anc 411 |
. . 3
|
| 40 | 39, 36 | eqeltrd 2281 |
. 2
|
| 41 | elfzelz 10146 |
. . . 4
| |
| 42 | elfzuz 10142 |
. . . . . 6
| |
| 43 | 42 | adantl 277 |
. . . . 5
|
| 44 | 23 | ad2antrr 488 |
. . . . 5
|
| 45 | nfv 1550 |
. . . . . . . 8
| |
| 46 | nfcsb1v 3125 |
. . . . . . . 8
| |
| 47 | 45, 46, 27 | nfif 3598 |
. . . . . . 7
|
| 48 | 47 | nfel1 2358 |
. . . . . 6
|
| 49 | eleq1w 2265 |
. . . . . . . 8
| |
| 50 | csbeq1a 3101 |
. . . . . . . 8
| |
| 51 | 49, 50 | ifbieq1d 3592 |
. . . . . . 7
|
| 52 | 51 | eleq1d 2273 |
. . . . . 6
|
| 53 | 48, 52 | rspc 2870 |
. . . . 5
|
| 54 | 43, 44, 53 | sylc 62 |
. . . 4
|
| 55 | nfcv 2347 |
. . . . 5
| |
| 56 | 55, 47, 51, 37 | fvmptf 5671 |
. . . 4
|
| 57 | 41, 54, 56 | syl2an2 594 |
. . 3
|
| 58 | uznfz 10224 |
. . . . . . 7
| |
| 59 | 58 | con2i 628 |
. . . . . 6
|
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | ssel 3186 |
. . . . . 6
| |
| 62 | 61 | ad2antlr 489 |
. . . . 5
|
| 63 | 60, 62 | mtod 664 |
. . . 4
|
| 64 | 63 | iffalsed 3580 |
. . 3
|
| 65 | 57, 64 | eqtrd 2237 |
. 2
|
| 66 | eluzelz 9656 |
. . . 4
| |
| 67 | simpr 110 |
. . . . 5
| |
| 68 | 23 | ad2antrr 488 |
. . . . 5
|
| 69 | 67, 68, 53 | sylc 62 |
. . . 4
|
| 70 | 66, 69, 56 | syl2an2 594 |
. . 3
|
| 71 | 70, 69 | eqeltrd 2281 |
. 2
|
| 72 | mulcl 8051 |
. . 3
| |
| 73 | 72 | adantl 277 |
. 2
|
| 74 | 2, 3, 5, 40, 65, 71, 73 | seq3id 10668 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 df-seqfrec 10591 |
| This theorem is referenced by: prodrbdclem2 11855 |
| Copyright terms: Public domain | W3C validator |