ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem Unicode version

Theorem prodrbdclem 11967
Description: Lemma for prodrbdc 11970. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrbdc.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
prodrbdclem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N
Allowed substitution hint:    B( k)

Proof of Theorem prodrbdclem
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullid 8100 . . 3  |-  ( n  e.  CC  ->  (
1  x.  n )  =  n )
21adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 1  x.  n )  =  n )
3 1cnd 8118 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  1  e.  CC )
4 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 276 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 eluzelz 9687 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
8 prodrbdc.dc . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
9 exmiddc 838 . . . . . . . . 9  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
108, 9syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
11 iftrue 3580 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
1211adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
13 prodmo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2283 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1514ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
1 )  e.  CC ) )
16 iffalse 3583 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
17 ax-1cn 8048 . . . . . . . . . . . 12  |-  1  e.  CC
1816, 17eqeltrdi 2297 . . . . . . . . . . 11  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1918a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2015, 19jaod 719 . . . . . . . . 9  |-  ( ph  ->  ( ( k  e.  A  \/  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  A  \/  -.  k  e.  A
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2210, 21mpd 13 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC )
2322ralrimiva 2580 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
24 nfcv 2349 . . . . . . . . . 10  |-  F/_ k N
2524nfel1 2360 . . . . . . . . 9  |-  F/ k  N  e.  A
26 nfcsb1v 3130 . . . . . . . . 9  |-  F/_ k [_ N  /  k ]_ B
27 nfcv 2349 . . . . . . . . 9  |-  F/_ k
1
2825, 26, 27nfif 3604 . . . . . . . 8  |-  F/_ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )
2928nfel1 2360 . . . . . . 7  |-  F/ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC
30 eleq1 2269 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  e.  A  <->  N  e.  A ) )
31 csbeq1a 3106 . . . . . . . . 9  |-  ( k  =  N  ->  B  =  [_ N  /  k ]_ B )
3230, 31ifbieq1d 3598 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  e.  A ,  B ,  1 )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
3332eleq1d 2275 . . . . . . 7  |-  ( k  =  N  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
3429, 33rspc 2875 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
354, 23, 34sylc 62 . . . . 5  |-  ( ph  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
3635adantr 276 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
37 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
3824, 28, 32, 37fvmptf 5690 . . . 4  |-  ( ( N  e.  ZZ  /\  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  N
)  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
397, 36, 38syl2anc 411 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
4039, 36eqeltrd 2283 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
41 elfzelz 10177 . . . 4  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
42 elfzuz 10173 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ( ZZ>= `  M )
)
4342adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
4423ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
45 nfv 1552 . . . . . . . 8  |-  F/ k  n  e.  A
46 nfcsb1v 3130 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ B
4745, 46, 27nfif 3604 . . . . . . 7  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )
4847nfel1 2360 . . . . . 6  |-  F/ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC
49 eleq1w 2267 . . . . . . . 8  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
50 csbeq1a 3106 . . . . . . . 8  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
5149, 50ifbieq1d 3598 . . . . . . 7  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  1 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5251eleq1d 2275 . . . . . 6  |-  ( k  =  n  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5348, 52rspc 2875 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5443, 44, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
55 nfcv 2349 . . . . 5  |-  F/_ k
n
5655, 47, 51, 37fvmptf 5690 . . . 4  |-  ( ( n  e.  ZZ  /\  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  n
)  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5741, 54, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
58 uznfz 10255 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  N
)  ->  -.  n  e.  ( M ... ( N  -  1 ) ) )
5958con2i 628 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  N ) )
6059adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  N )
)
61 ssel 3191 . . . . . 6  |-  ( A 
C_  ( ZZ>= `  N
)  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6261ad2antlr 489 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6360, 62mtod 665 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
6463iffalsed 3585 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  =  1 )
6557, 64eqtrd 2239 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  1 )
66 eluzelz 9687 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
67 simpr 110 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
6823ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
6967, 68, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
7066, 69, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
7170, 69eqeltrd 2283 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  e.  CC )
72 mulcl 8082 . . 3  |-  ( ( n  e.  CC  /\  z  e.  CC )  ->  ( n  x.  z
)  e.  CC )
7372adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  ( n  e.  CC  /\  z  e.  CC ) )  -> 
( n  x.  z
)  e.  CC )
742, 3, 5, 40, 65, 71, 73seq3id 10702 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   A.wral 2485   [_csb 3097    C_ wss 3170   ifcif 3575    |-> cmpt 4116    |` cres 4690   ` cfv 5285  (class class class)co 5962   CCcc 7953   1c1 7956    x. cmul 7960    - cmin 8273   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160    seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-seqfrec 10625
This theorem is referenced by:  prodrbdclem2  11969
  Copyright terms: Public domain W3C validator