ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem Unicode version

Theorem prodrbdclem 11545
Description: Lemma for prodrbdc 11548. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrbdc.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
prodrbdclem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N
Allowed substitution hint:    B( k)

Proof of Theorem prodrbdclem
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid2 7930 . . 3  |-  ( n  e.  CC  ->  (
1  x.  n )  =  n )
21adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 1  x.  n )  =  n )
3 1cnd 7948 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  1  e.  CC )
4 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 276 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 eluzelz 9508 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
8 prodrbdc.dc . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
9 exmiddc 836 . . . . . . . . 9  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
108, 9syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
11 iftrue 3537 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
1211adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
13 prodmo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2252 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1514ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
1 )  e.  CC ) )
16 iffalse 3540 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
17 ax-1cn 7879 . . . . . . . . . . . 12  |-  1  e.  CC
1816, 17eqeltrdi 2266 . . . . . . . . . . 11  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1918a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2015, 19jaod 717 . . . . . . . . 9  |-  ( ph  ->  ( ( k  e.  A  \/  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  A  \/  -.  k  e.  A
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2210, 21mpd 13 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC )
2322ralrimiva 2548 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
24 nfcv 2317 . . . . . . . . . 10  |-  F/_ k N
2524nfel1 2328 . . . . . . . . 9  |-  F/ k  N  e.  A
26 nfcsb1v 3088 . . . . . . . . 9  |-  F/_ k [_ N  /  k ]_ B
27 nfcv 2317 . . . . . . . . 9  |-  F/_ k
1
2825, 26, 27nfif 3560 . . . . . . . 8  |-  F/_ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )
2928nfel1 2328 . . . . . . 7  |-  F/ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC
30 eleq1 2238 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  e.  A  <->  N  e.  A ) )
31 csbeq1a 3064 . . . . . . . . 9  |-  ( k  =  N  ->  B  =  [_ N  /  k ]_ B )
3230, 31ifbieq1d 3554 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  e.  A ,  B ,  1 )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
3332eleq1d 2244 . . . . . . 7  |-  ( k  =  N  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
3429, 33rspc 2833 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
354, 23, 34sylc 62 . . . . 5  |-  ( ph  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
3635adantr 276 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
37 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
3824, 28, 32, 37fvmptf 5600 . . . 4  |-  ( ( N  e.  ZZ  /\  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  N
)  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
397, 36, 38syl2anc 411 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
4039, 36eqeltrd 2252 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
41 elfzelz 9993 . . . 4  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
42 elfzuz 9989 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ( ZZ>= `  M )
)
4342adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
4423ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
45 nfv 1526 . . . . . . . 8  |-  F/ k  n  e.  A
46 nfcsb1v 3088 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ B
4745, 46, 27nfif 3560 . . . . . . 7  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )
4847nfel1 2328 . . . . . 6  |-  F/ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC
49 eleq1w 2236 . . . . . . . 8  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
50 csbeq1a 3064 . . . . . . . 8  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
5149, 50ifbieq1d 3554 . . . . . . 7  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  1 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5251eleq1d 2244 . . . . . 6  |-  ( k  =  n  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5348, 52rspc 2833 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5443, 44, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
55 nfcv 2317 . . . . 5  |-  F/_ k
n
5655, 47, 51, 37fvmptf 5600 . . . 4  |-  ( ( n  e.  ZZ  /\  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  n
)  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5741, 54, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
58 uznfz 10071 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  N
)  ->  -.  n  e.  ( M ... ( N  -  1 ) ) )
5958con2i 627 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  N ) )
6059adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  N )
)
61 ssel 3147 . . . . . 6  |-  ( A 
C_  ( ZZ>= `  N
)  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6261ad2antlr 489 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6360, 62mtod 663 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
6463iffalsed 3542 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  =  1 )
6557, 64eqtrd 2208 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  1 )
66 eluzelz 9508 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
67 simpr 110 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
6823ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
6967, 68, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
7066, 69, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
7170, 69eqeltrd 2252 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  e.  CC )
72 mulcl 7913 . . 3  |-  ( ( n  e.  CC  /\  z  e.  CC )  ->  ( n  x.  z
)  e.  CC )
7372adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  ( n  e.  CC  /\  z  e.  CC ) )  -> 
( n  x.  z
)  e.  CC )
742, 3, 5, 40, 65, 71, 73seq3id 10476 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2146   A.wral 2453   [_csb 3055    C_ wss 3127   ifcif 3532    |-> cmpt 4059    |` cres 4622   ` cfv 5208  (class class class)co 5865   CCcc 7784   1c1 7787    x. cmul 7791    - cmin 8102   ZZcz 9224   ZZ>=cuz 9499   ...cfz 9977    seqcseq 10413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978  df-fzo 10111  df-seqfrec 10414
This theorem is referenced by:  prodrbdclem2  11547
  Copyright terms: Public domain W3C validator