| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodrbdclem | Unicode version | ||
| Description: Lemma for prodrbdc 12080. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.) |
| Ref | Expression |
|---|---|
| prodmo.1 |
|
| prodmo.2 |
|
| prodrbdc.dc |
|
| prodrb.3 |
|
| Ref | Expression |
|---|---|
| prodrbdclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullid 8140 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | 1cnd 8158 |
. 2
| |
| 4 | prodrb.3 |
. . 3
| |
| 5 | 4 | adantr 276 |
. 2
|
| 6 | eluzelz 9727 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | prodrbdc.dc |
. . . . . . . . 9
| |
| 9 | exmiddc 841 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | iftrue 3607 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . . . 12
|
| 13 | prodmo.2 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | eqeltrd 2306 |
. . . . . . . . . . 11
|
| 15 | 14 | ex 115 |
. . . . . . . . . 10
|
| 16 | iffalse 3610 |
. . . . . . . . . . . 12
| |
| 17 | ax-1cn 8088 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | eqeltrdi 2320 |
. . . . . . . . . . 11
|
| 19 | 18 | a1i 9 |
. . . . . . . . . 10
|
| 20 | 15, 19 | jaod 722 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 10, 21 | mpd 13 |
. . . . . . 7
|
| 23 | 22 | ralrimiva 2603 |
. . . . . 6
|
| 24 | nfcv 2372 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2383 |
. . . . . . . . 9
|
| 26 | nfcsb1v 3157 |
. . . . . . . . 9
| |
| 27 | nfcv 2372 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | nfif 3631 |
. . . . . . . 8
|
| 29 | 28 | nfel1 2383 |
. . . . . . 7
|
| 30 | eleq1 2292 |
. . . . . . . . 9
| |
| 31 | csbeq1a 3133 |
. . . . . . . . 9
| |
| 32 | 30, 31 | ifbieq1d 3625 |
. . . . . . . 8
|
| 33 | 32 | eleq1d 2298 |
. . . . . . 7
|
| 34 | 29, 33 | rspc 2901 |
. . . . . 6
|
| 35 | 4, 23, 34 | sylc 62 |
. . . . 5
|
| 36 | 35 | adantr 276 |
. . . 4
|
| 37 | prodmo.1 |
. . . . 5
| |
| 38 | 24, 28, 32, 37 | fvmptf 5726 |
. . . 4
|
| 39 | 7, 36, 38 | syl2anc 411 |
. . 3
|
| 40 | 39, 36 | eqeltrd 2306 |
. 2
|
| 41 | elfzelz 10217 |
. . . 4
| |
| 42 | elfzuz 10213 |
. . . . . 6
| |
| 43 | 42 | adantl 277 |
. . . . 5
|
| 44 | 23 | ad2antrr 488 |
. . . . 5
|
| 45 | nfv 1574 |
. . . . . . . 8
| |
| 46 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 47 | 45, 46, 27 | nfif 3631 |
. . . . . . 7
|
| 48 | 47 | nfel1 2383 |
. . . . . 6
|
| 49 | eleq1w 2290 |
. . . . . . . 8
| |
| 50 | csbeq1a 3133 |
. . . . . . . 8
| |
| 51 | 49, 50 | ifbieq1d 3625 |
. . . . . . 7
|
| 52 | 51 | eleq1d 2298 |
. . . . . 6
|
| 53 | 48, 52 | rspc 2901 |
. . . . 5
|
| 54 | 43, 44, 53 | sylc 62 |
. . . 4
|
| 55 | nfcv 2372 |
. . . . 5
| |
| 56 | 55, 47, 51, 37 | fvmptf 5726 |
. . . 4
|
| 57 | 41, 54, 56 | syl2an2 596 |
. . 3
|
| 58 | uznfz 10295 |
. . . . . . 7
| |
| 59 | 58 | con2i 630 |
. . . . . 6
|
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | ssel 3218 |
. . . . . 6
| |
| 62 | 61 | ad2antlr 489 |
. . . . 5
|
| 63 | 60, 62 | mtod 667 |
. . . 4
|
| 64 | 63 | iffalsed 3612 |
. . 3
|
| 65 | 57, 64 | eqtrd 2262 |
. 2
|
| 66 | eluzelz 9727 |
. . . 4
| |
| 67 | simpr 110 |
. . . . 5
| |
| 68 | 23 | ad2antrr 488 |
. . . . 5
|
| 69 | 67, 68, 53 | sylc 62 |
. . . 4
|
| 70 | 66, 69, 56 | syl2an2 596 |
. . 3
|
| 71 | 70, 69 | eqeltrd 2306 |
. 2
|
| 72 | mulcl 8122 |
. . 3
| |
| 73 | 72 | adantl 277 |
. 2
|
| 74 | 2, 3, 5, 40, 65, 71, 73 | seq3id 10742 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: prodrbdclem2 12079 |
| Copyright terms: Public domain | W3C validator |