ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem Unicode version

Theorem prodrbdclem 11372
Description: Lemma for prodrbdc 11375. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrbdc.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
prodrbdclem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N
Allowed substitution hint:    B( k)

Proof of Theorem prodrbdclem
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid2 7788 . . 3  |-  ( n  e.  CC  ->  (
1  x.  n )  =  n )
21adantl 275 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 1  x.  n )  =  n )
3 1cnd 7806 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  1  e.  CC )
4 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 274 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 eluzelz 9359 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
8 prodrbdc.dc . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
9 exmiddc 822 . . . . . . . . 9  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
108, 9syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
11 iftrue 3484 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
1211adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
13 prodmo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2217 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1514ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
1 )  e.  CC ) )
16 iffalse 3487 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
17 ax-1cn 7737 . . . . . . . . . . . 12  |-  1  e.  CC
1816, 17eqeltrdi 2231 . . . . . . . . . . 11  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1918a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2015, 19jaod 707 . . . . . . . . 9  |-  ( ph  ->  ( ( k  e.  A  \/  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC ) )
2120adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  A  \/  -.  k  e.  A
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC ) )
2210, 21mpd 13 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC )
2322ralrimiva 2508 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
24 nfcv 2282 . . . . . . . . . 10  |-  F/_ k N
2524nfel1 2293 . . . . . . . . 9  |-  F/ k  N  e.  A
26 nfcsb1v 3040 . . . . . . . . 9  |-  F/_ k [_ N  /  k ]_ B
27 nfcv 2282 . . . . . . . . 9  |-  F/_ k
1
2825, 26, 27nfif 3505 . . . . . . . 8  |-  F/_ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )
2928nfel1 2293 . . . . . . 7  |-  F/ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC
30 eleq1 2203 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  e.  A  <->  N  e.  A ) )
31 csbeq1a 3016 . . . . . . . . 9  |-  ( k  =  N  ->  B  =  [_ N  /  k ]_ B )
3230, 31ifbieq1d 3499 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  e.  A ,  B ,  1 )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
3332eleq1d 2209 . . . . . . 7  |-  ( k  =  N  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
3429, 33rspc 2787 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC ) )
354, 23, 34sylc 62 . . . . 5  |-  ( ph  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
3635adantr 274 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )
37 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
3824, 28, 32, 37fvmptf 5521 . . . 4  |-  ( ( N  e.  ZZ  /\  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  N
)  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
397, 36, 38syl2anc 409 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  1 ) )
4039, 36eqeltrd 2217 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
41 elfzelz 9837 . . . 4  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
42 elfzuz 9833 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ( ZZ>= `  M )
)
4342adantl 275 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
4423ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
45 nfv 1509 . . . . . . . 8  |-  F/ k  n  e.  A
46 nfcsb1v 3040 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ B
4745, 46, 27nfif 3505 . . . . . . 7  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )
4847nfel1 2293 . . . . . 6  |-  F/ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC
49 eleq1w 2201 . . . . . . . 8  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
50 csbeq1a 3016 . . . . . . . 8  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
5149, 50ifbieq1d 3499 . . . . . . 7  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  1 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5251eleq1d 2209 . . . . . 6  |-  ( k  =  n  ->  ( if ( k  e.  A ,  B ,  1 )  e.  CC  <->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5348, 52rspc 2787 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC ) )
5443, 44, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
55 nfcv 2282 . . . . 5  |-  F/_ k
n
5655, 47, 51, 37fvmptf 5521 . . . 4  |-  ( ( n  e.  ZZ  /\  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )  -> 
( F `  n
)  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
5741, 54, 56syl2an2 584 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
58 uznfz 9914 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  N
)  ->  -.  n  e.  ( M ... ( N  -  1 ) ) )
5958con2i 617 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  N ) )
6059adantl 275 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  N )
)
61 ssel 3096 . . . . . 6  |-  ( A 
C_  ( ZZ>= `  N
)  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6261ad2antlr 481 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6360, 62mtod 653 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
6463iffalsed 3489 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  =  1 )
6557, 64eqtrd 2173 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  1 )
66 eluzelz 9359 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
67 simpr 109 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
6823ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  1 )  e.  CC )
6967, 68, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  1 )  e.  CC )
7066, 69, 56syl2an2 584 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  1 ) )
7170, 69eqeltrd 2217 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  e.  CC )
72 mulcl 7771 . . 3  |-  ( ( n  e.  CC  /\  z  e.  CC )  ->  ( n  x.  z
)  e.  CC )
7372adantl 275 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  ( n  e.  CC  /\  z  e.  CC ) )  -> 
( n  x.  z
)  e.  CC )
742, 3, 5, 40, 65, 71, 73seq3id 10312 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   A.wral 2417   [_csb 3007    C_ wss 3076   ifcif 3479    |-> cmpt 3997    |` cres 4549   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    x. cmul 7649    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951  df-seqfrec 10250
This theorem is referenced by:  prodrbdclem2  11374
  Copyright terms: Public domain W3C validator