| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsum3cvg2 | Unicode version | ||
| Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
| Ref | Expression |
|---|---|
| fsumsers.1 |
|
| fsumsers.2 |
|
| fsumsers.3 |
|
| fsumsers.dc |
|
| fsumsers.4 |
|
| Ref | Expression |
|---|---|
| fsum3cvg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. . . 4
| |
| 2 | nfv 1551 |
. . . . 5
| |
| 3 | nfcsb1v 3126 |
. . . . 5
| |
| 4 | nfcv 2348 |
. . . . 5
| |
| 5 | 2, 3, 4 | nfif 3599 |
. . . 4
|
| 6 | eleq1w 2266 |
. . . . 5
| |
| 7 | csbeq1a 3102 |
. . . . 5
| |
| 8 | 6, 7 | ifbieq1d 3593 |
. . . 4
|
| 9 | 1, 5, 8 | cbvmpt 4139 |
. . 3
|
| 10 | fsumsers.3 |
. . . . 5
| |
| 11 | 10 | ralrimiva 2579 |
. . . 4
|
| 12 | 3 | nfel1 2359 |
. . . . 5
|
| 13 | 7 | eleq1d 2274 |
. . . . 5
|
| 14 | 12, 13 | rspc 2871 |
. . . 4
|
| 15 | 11, 14 | mpan9 281 |
. . 3
|
| 16 | 6 | dcbid 840 |
. . . 4
|
| 17 | fsumsers.dc |
. . . . . 6
| |
| 18 | 17 | ralrimiva 2579 |
. . . . 5
|
| 19 | 18 | adantr 276 |
. . . 4
|
| 20 | simpr 110 |
. . . 4
| |
| 21 | 16, 19, 20 | rspcdva 2882 |
. . 3
|
| 22 | fsumsers.2 |
. . 3
| |
| 23 | fsumsers.4 |
. . 3
| |
| 24 | 9, 15, 21, 22, 23 | fsum3cvg 11689 |
. 2
|
| 25 | eluzel2 9653 |
. . . 4
| |
| 26 | 22, 25 | syl 14 |
. . 3
|
| 27 | fveq2 5576 |
. . . . 5
| |
| 28 | 27 | eleq1d 2274 |
. . . 4
|
| 29 | fsumsers.1 |
. . . . . . 7
| |
| 30 | 10 | adantlr 477 |
. . . . . . . 8
|
| 31 | 0cnd 8065 |
. . . . . . . 8
| |
| 32 | 30, 31, 17 | ifcldadc 3600 |
. . . . . . 7
|
| 33 | 29, 32 | eqeltrd 2282 |
. . . . . 6
|
| 34 | 33 | ralrimiva 2579 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | simpr 110 |
. . . 4
| |
| 37 | 28, 35, 36 | rspcdva 2882 |
. . 3
|
| 38 | eluzelz 9657 |
. . . . . . 7
| |
| 39 | eqid 2205 |
. . . . . . . 8
| |
| 40 | 39 | fvmpt2 5663 |
. . . . . . 7
|
| 41 | 38, 32, 40 | syl2an2 594 |
. . . . . 6
|
| 42 | 29, 41 | eqtr4d 2241 |
. . . . 5
|
| 43 | 42 | ralrimiva 2579 |
. . . 4
|
| 44 | nffvmpt1 5587 |
. . . . . 6
| |
| 45 | 44 | nfeq2 2360 |
. . . . 5
|
| 46 | fveq2 5576 |
. . . . . 6
| |
| 47 | fveq2 5576 |
. . . . . 6
| |
| 48 | 46, 47 | eqeq12d 2220 |
. . . . 5
|
| 49 | 45, 48 | rspc 2871 |
. . . 4
|
| 50 | 43, 49 | mpan9 281 |
. . 3
|
| 51 | addcl 8050 |
. . . 4
| |
| 52 | 51 | adantl 277 |
. . 3
|
| 53 | 26, 37, 50, 52 | seq3feq 10625 |
. 2
|
| 54 | 53 | fveq1d 5578 |
. 2
|
| 55 | 24, 53, 54 | 3brtr4d 4076 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-fz 10131 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-rsqrt 11309 df-abs 11310 df-clim 11590 |
| This theorem is referenced by: fsumsersdc 11706 fsum3cvg3 11707 ef0lem 11971 |
| Copyright terms: Public domain | W3C validator |