ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 Unicode version

Theorem fsum3cvg2 11559
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2339 . . . 4  |-  F/_ m if ( k  e.  A ,  B ,  0 )
2 nfv 1542 . . . . 5  |-  F/ k  m  e.  A
3 nfcsb1v 3117 . . . . 5  |-  F/_ k [_ m  /  k ]_ B
4 nfcv 2339 . . . . 5  |-  F/_ k
0
52, 3, 4nfif 3589 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 )
6 eleq1w 2257 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
7 csbeq1a 3093 . . . . 5  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
86, 7ifbieq1d 3583 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
91, 5, 8cbvmpt 4128 . . 3  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( m  e.  ZZ  |->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
10 fsumsers.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1110ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
123nfel1 2350 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  e.  CC
137eleq1d 2265 . . . . 5  |-  ( k  =  m  ->  ( B  e.  CC  <->  [_ m  / 
k ]_ B  e.  CC ) )
1412, 13rspc 2862 . . . 4  |-  ( m  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ m  /  k ]_ B  e.  CC )
)
1511, 14mpan9 281 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
166dcbid 839 . . . 4  |-  ( k  =  m  ->  (DECID  k  e.  A  <-> DECID  m  e.  A )
)
17 fsumsers.dc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1817ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  A )
1918adantr 276 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )DECID  k  e.  A )
20 simpr 110 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
2116, 19, 20rspcdva 2873 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
22 fsumsers.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
23 fsumsers.4 . . 3  |-  ( ph  ->  A  C_  ( M ... N ) )
249, 15, 21, 22, 23fsum3cvg 11543 . 2  |-  ( ph  ->  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq M
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
25 eluzel2 9606 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2622, 25syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
27 fveq2 5558 . . . . 5  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2827eleq1d 2265 . . . 4  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
29 fsumsers.1 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3010adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
31 0cnd 8019 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  0  e.  CC )
3230, 31, 17ifcldadc 3590 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
3329, 32eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3433ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3534adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
36 simpr 110 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
3728, 35, 36rspcdva 2873 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
38 eluzelz 9610 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
39 eqid 2196 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
4039fvmpt2 5645 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  =  if ( k  e.  A ,  B , 
0 ) )
4138, 32, 40syl2an2 594 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
4229, 41eqtr4d 2232 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
4342ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
44 nffvmpt1 5569 . . . . . 6  |-  F/_ k
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 n )
4544nfeq2 2351 . . . . 5  |-  F/ k ( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n )
46 fveq2 5558 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
47 fveq2 5558 . . . . . 6  |-  ( k  =  n  ->  (
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4846, 47eqeq12d 2211 . . . . 5  |-  ( k  =  n  ->  (
( F `  k
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  <-> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4945, 48rspc 2862 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  -> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
5043, 49mpan9 281 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
51 addcl 8004 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5251adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5326, 37, 50, 52seq3feq 10572 . 2  |-  ( ph  ->  seq M (  +  ,  F )  =  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) )
5453fveq1d 5560 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  =  (  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
5524, 53, 543brtr4d 4065 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   [_csb 3084    C_ wss 3157   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  fsumsersdc  11560  fsum3cvg3  11561  ef0lem  11825
  Copyright terms: Public domain W3C validator