| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsum3cvg2 | Unicode version | ||
| Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
| Ref | Expression |
|---|---|
| fsumsers.1 |
|
| fsumsers.2 |
|
| fsumsers.3 |
|
| fsumsers.dc |
|
| fsumsers.4 |
|
| Ref | Expression |
|---|---|
| fsum3cvg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. . . 4
| |
| 2 | nfv 1552 |
. . . . 5
| |
| 3 | nfcsb1v 3134 |
. . . . 5
| |
| 4 | nfcv 2350 |
. . . . 5
| |
| 5 | 2, 3, 4 | nfif 3608 |
. . . 4
|
| 6 | eleq1w 2268 |
. . . . 5
| |
| 7 | csbeq1a 3110 |
. . . . 5
| |
| 8 | 6, 7 | ifbieq1d 3602 |
. . . 4
|
| 9 | 1, 5, 8 | cbvmpt 4155 |
. . 3
|
| 10 | fsumsers.3 |
. . . . 5
| |
| 11 | 10 | ralrimiva 2581 |
. . . 4
|
| 12 | 3 | nfel1 2361 |
. . . . 5
|
| 13 | 7 | eleq1d 2276 |
. . . . 5
|
| 14 | 12, 13 | rspc 2878 |
. . . 4
|
| 15 | 11, 14 | mpan9 281 |
. . 3
|
| 16 | 6 | dcbid 840 |
. . . 4
|
| 17 | fsumsers.dc |
. . . . . 6
| |
| 18 | 17 | ralrimiva 2581 |
. . . . 5
|
| 19 | 18 | adantr 276 |
. . . 4
|
| 20 | simpr 110 |
. . . 4
| |
| 21 | 16, 19, 20 | rspcdva 2889 |
. . 3
|
| 22 | fsumsers.2 |
. . 3
| |
| 23 | fsumsers.4 |
. . 3
| |
| 24 | 9, 15, 21, 22, 23 | fsum3cvg 11804 |
. 2
|
| 25 | eluzel2 9688 |
. . . 4
| |
| 26 | 22, 25 | syl 14 |
. . 3
|
| 27 | fveq2 5599 |
. . . . 5
| |
| 28 | 27 | eleq1d 2276 |
. . . 4
|
| 29 | fsumsers.1 |
. . . . . . 7
| |
| 30 | 10 | adantlr 477 |
. . . . . . . 8
|
| 31 | 0cnd 8100 |
. . . . . . . 8
| |
| 32 | 30, 31, 17 | ifcldadc 3609 |
. . . . . . 7
|
| 33 | 29, 32 | eqeltrd 2284 |
. . . . . 6
|
| 34 | 33 | ralrimiva 2581 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | simpr 110 |
. . . 4
| |
| 37 | 28, 35, 36 | rspcdva 2889 |
. . 3
|
| 38 | eluzelz 9692 |
. . . . . . 7
| |
| 39 | eqid 2207 |
. . . . . . . 8
| |
| 40 | 39 | fvmpt2 5686 |
. . . . . . 7
|
| 41 | 38, 32, 40 | syl2an2 594 |
. . . . . 6
|
| 42 | 29, 41 | eqtr4d 2243 |
. . . . 5
|
| 43 | 42 | ralrimiva 2581 |
. . . 4
|
| 44 | nffvmpt1 5610 |
. . . . . 6
| |
| 45 | 44 | nfeq2 2362 |
. . . . 5
|
| 46 | fveq2 5599 |
. . . . . 6
| |
| 47 | fveq2 5599 |
. . . . . 6
| |
| 48 | 46, 47 | eqeq12d 2222 |
. . . . 5
|
| 49 | 45, 48 | rspc 2878 |
. . . 4
|
| 50 | 43, 49 | mpan9 281 |
. . 3
|
| 51 | addcl 8085 |
. . . 4
| |
| 52 | 51 | adantl 277 |
. . 3
|
| 53 | 26, 37, 50, 52 | seq3feq 10662 |
. 2
|
| 54 | 53 | fveq1d 5601 |
. 2
|
| 55 | 24, 53, 54 | 3brtr4d 4091 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-fz 10166 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-rsqrt 11424 df-abs 11425 df-clim 11705 |
| This theorem is referenced by: fsumsersdc 11821 fsum3cvg3 11822 ef0lem 12086 |
| Copyright terms: Public domain | W3C validator |