ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 Unicode version

Theorem fsum3cvg2 10841
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2229 . . . 4  |-  F/_ m if ( k  e.  A ,  B ,  0 )
2 nfv 1467 . . . . 5  |-  F/ k  m  e.  A
3 nfcsb1v 2964 . . . . 5  |-  F/_ k [_ m  /  k ]_ B
4 nfcv 2229 . . . . 5  |-  F/_ k
0
52, 3, 4nfif 3423 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 )
6 eleq1w 2149 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
7 csbeq1a 2942 . . . . 5  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
86, 7ifbieq1d 3417 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
91, 5, 8cbvmpt 3939 . . 3  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( m  e.  ZZ  |->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
10 fsumsers.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1110ralrimiva 2447 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
123nfel1 2240 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  e.  CC
137eleq1d 2157 . . . . 5  |-  ( k  =  m  ->  ( B  e.  CC  <->  [_ m  / 
k ]_ B  e.  CC ) )
1412, 13rspc 2717 . . . 4  |-  ( m  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ m  /  k ]_ B  e.  CC )
)
1511, 14mpan9 276 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
166dcbid 787 . . . 4  |-  ( k  =  m  ->  (DECID  k  e.  A  <-> DECID  m  e.  A )
)
17 fsumsers.dc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1817ralrimiva 2447 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  A )
1918adantr 271 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )DECID  k  e.  A )
20 simpr 109 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
2116, 19, 20rspcdva 2728 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
22 fsumsers.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
23 fsumsers.4 . . 3  |-  ( ph  ->  A  C_  ( M ... N ) )
249, 15, 21, 22, 23fsum3cvg 10821 . 2  |-  ( ph  ->  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq M
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
25 eluzel2 9078 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2622, 25syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
27 fveq2 5318 . . . . 5  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2827eleq1d 2157 . . . 4  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
29 fsumsers.1 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3010adantlr 462 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
31 0cnd 7535 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  0  e.  CC )
3230, 31, 17ifcldadc 3424 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
3329, 32eqeltrd 2165 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3433ralrimiva 2447 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3534adantr 271 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
36 simpr 109 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
3728, 35, 36rspcdva 2728 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
38 eluzelz 9082 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
39 eqid 2089 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
4039fvmpt2 5399 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  =  if ( k  e.  A ,  B , 
0 ) )
4138, 32, 40syl2an2 562 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
4229, 41eqtr4d 2124 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
4342ralrimiva 2447 . . . 4  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
44 nffvmpt1 5329 . . . . . 6  |-  F/_ k
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 n )
4544nfeq2 2241 . . . . 5  |-  F/ k ( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n )
46 fveq2 5318 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
47 fveq2 5318 . . . . . 6  |-  ( k  =  n  ->  (
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4846, 47eqeq12d 2103 . . . . 5  |-  ( k  =  n  ->  (
( F `  k
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  <-> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4945, 48rspc 2717 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  -> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
5043, 49mpan9 276 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
51 addcl 7521 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5251adantl 272 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5326, 37, 50, 52seq3feq 9951 . 2  |-  ( ph  ->  seq M (  +  ,  F )  =  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) )
5453fveq1d 5320 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  =  (  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
5524, 53, 543brtr4d 3881 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 781    = wceq 1290    e. wcel 1439   A.wral 2360   [_csb 2934    C_ wss 3000   ifcif 3397   class class class wbr 3851    |-> cmpt 3905   ` cfv 5028  (class class class)co 5666   CCcc 7402   0cc0 7404    + caddc 7407   ZZcz 8804   ZZ>=cuz 9073   ...cfz 9478    seqcseq 9906    ~~> cli 10720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-n0 8728  df-z 8805  df-uz 9074  df-rp 9189  df-fz 9479  df-iseq 9907  df-seq3 9908  df-exp 10009  df-cj 10330  df-rsqrt 10485  df-abs 10486  df-clim 10721
This theorem is referenced by:  fsum3cvg3  10843  ef0lem  11004
  Copyright terms: Public domain W3C validator