ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 Unicode version

Theorem fsum3cvg2 11401
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . . 4  |-  F/_ m if ( k  e.  A ,  B ,  0 )
2 nfv 1528 . . . . 5  |-  F/ k  m  e.  A
3 nfcsb1v 3090 . . . . 5  |-  F/_ k [_ m  /  k ]_ B
4 nfcv 2319 . . . . 5  |-  F/_ k
0
52, 3, 4nfif 3562 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 )
6 eleq1w 2238 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
7 csbeq1a 3066 . . . . 5  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
86, 7ifbieq1d 3556 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
91, 5, 8cbvmpt 4098 . . 3  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( m  e.  ZZ  |->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
10 fsumsers.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1110ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
123nfel1 2330 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  e.  CC
137eleq1d 2246 . . . . 5  |-  ( k  =  m  ->  ( B  e.  CC  <->  [_ m  / 
k ]_ B  e.  CC ) )
1412, 13rspc 2835 . . . 4  |-  ( m  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ m  /  k ]_ B  e.  CC )
)
1511, 14mpan9 281 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
166dcbid 838 . . . 4  |-  ( k  =  m  ->  (DECID  k  e.  A  <-> DECID  m  e.  A )
)
17 fsumsers.dc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1817ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  A )
1918adantr 276 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )DECID  k  e.  A )
20 simpr 110 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
2116, 19, 20rspcdva 2846 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
22 fsumsers.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
23 fsumsers.4 . . 3  |-  ( ph  ->  A  C_  ( M ... N ) )
249, 15, 21, 22, 23fsum3cvg 11385 . 2  |-  ( ph  ->  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq M
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
25 eluzel2 9532 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2622, 25syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
27 fveq2 5515 . . . . 5  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2827eleq1d 2246 . . . 4  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
29 fsumsers.1 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3010adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
31 0cnd 7949 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  0  e.  CC )
3230, 31, 17ifcldadc 3563 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
3329, 32eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3433ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3534adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
36 simpr 110 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
3728, 35, 36rspcdva 2846 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
38 eluzelz 9536 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
39 eqid 2177 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
4039fvmpt2 5599 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  =  if ( k  e.  A ,  B , 
0 ) )
4138, 32, 40syl2an2 594 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
4229, 41eqtr4d 2213 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
4342ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
44 nffvmpt1 5526 . . . . . 6  |-  F/_ k
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 n )
4544nfeq2 2331 . . . . 5  |-  F/ k ( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n )
46 fveq2 5515 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
47 fveq2 5515 . . . . . 6  |-  ( k  =  n  ->  (
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4846, 47eqeq12d 2192 . . . . 5  |-  ( k  =  n  ->  (
( F `  k
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  <-> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4945, 48rspc 2835 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  -> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
5043, 49mpan9 281 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
51 addcl 7935 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5251adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5326, 37, 50, 52seq3feq 10471 . 2  |-  ( ph  ->  seq M (  +  ,  F )  =  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) )
5453fveq1d 5517 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  =  (  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
5524, 53, 543brtr4d 4035 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3057    C_ wss 3129   ifcif 3534   class class class wbr 4003    |-> cmpt 4064   ` cfv 5216  (class class class)co 5874   CCcc 7808   0cc0 7810    + caddc 7813   ZZcz 9252   ZZ>=cuz 9527   ...cfz 10007    seqcseq 10444    ~~> cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-fz 10008  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by:  fsumsersdc  11402  fsum3cvg3  11403  ef0lem  11667
  Copyright terms: Public domain W3C validator