ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg2 Unicode version

Theorem fsum3cvg2 11705
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumsers.1  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
fsumsers.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumsers.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumsers.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumsers.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . . . 4  |-  F/_ m if ( k  e.  A ,  B ,  0 )
2 nfv 1551 . . . . 5  |-  F/ k  m  e.  A
3 nfcsb1v 3126 . . . . 5  |-  F/_ k [_ m  /  k ]_ B
4 nfcv 2348 . . . . 5  |-  F/_ k
0
52, 3, 4nfif 3599 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 )
6 eleq1w 2266 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
7 csbeq1a 3102 . . . . 5  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
86, 7ifbieq1d 3593 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
91, 5, 8cbvmpt 4139 . . 3  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( m  e.  ZZ  |->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  0 ) )
10 fsumsers.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1110ralrimiva 2579 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
123nfel1 2359 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  e.  CC
137eleq1d 2274 . . . . 5  |-  ( k  =  m  ->  ( B  e.  CC  <->  [_ m  / 
k ]_ B  e.  CC ) )
1412, 13rspc 2871 . . . 4  |-  ( m  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ m  /  k ]_ B  e.  CC )
)
1511, 14mpan9 281 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
166dcbid 840 . . . 4  |-  ( k  =  m  ->  (DECID  k  e.  A  <-> DECID  m  e.  A )
)
17 fsumsers.dc . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
1817ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  A )
1918adantr 276 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )DECID  k  e.  A )
20 simpr 110 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
2116, 19, 20rspcdva 2882 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
22 fsumsers.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
23 fsumsers.4 . . 3  |-  ( ph  ->  A  C_  ( M ... N ) )
249, 15, 21, 22, 23fsum3cvg 11689 . 2  |-  ( ph  ->  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq M
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
25 eluzel2 9653 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2622, 25syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
27 fveq2 5576 . . . . 5  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2827eleq1d 2274 . . . 4  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
29 fsumsers.1 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
3010adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
31 0cnd 8065 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  0  e.  CC )
3230, 31, 17ifcldadc 3600 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
3329, 32eqeltrd 2282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3433ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
3534adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
36 simpr 110 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
3728, 35, 36rspcdva 2882 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  CC )
38 eluzelz 9657 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
39 eqid 2205 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
4039fvmpt2 5663 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  =  if ( k  e.  A ,  B , 
0 ) )
4138, 32, 40syl2an2 594 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
4229, 41eqtr4d 2241 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
4342ralrimiva 2579 . . . 4  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k ) )
44 nffvmpt1 5587 . . . . . 6  |-  F/_ k
( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 n )
4544nfeq2 2360 . . . . 5  |-  F/ k ( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n )
46 fveq2 5576 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
47 fveq2 5576 . . . . . 6  |-  ( k  =  n  ->  (
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
4846, 47eqeq12d 2220 . . . . 5  |-  ( k  =  n  ->  (
( F `  k
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  k )  <-> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
4945, 48rspc 2871 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `
 k )  -> 
( F `  n
)  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) ) )
5043, 49mpan9 281 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  n ) )
51 addcl 8050 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
5251adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
5326, 37, 50, 52seq3feq 10625 . 2  |-  ( ph  ->  seq M (  +  ,  F )  =  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) )
5453fveq1d 5578 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  =  (  seq M (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) ) `  N
) )
5524, 53, 543brtr4d 4076 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   [_csb 3093    C_ wss 3166   ifcif 3571   class class class wbr 4044    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925    + caddc 7928   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-fz 10131  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  fsumsersdc  11706  fsum3cvg3  11707  ef0lem  11971
  Copyright terms: Public domain W3C validator