ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdivap Unicode version

Theorem expdivap 10520
Description: Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expdivap  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A ^ N )  /  ( B ^ N ) ) )

Proof of Theorem expdivap
StepHypRef Expression
1 divrecap 8598 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
213expb 1199 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  /  B )  =  ( A  x.  ( 1  /  B ) ) )
323adant3 1012 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( A  /  B
)  =  ( A  x.  ( 1  /  B ) ) )
43oveq1d 5866 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A  x.  ( 1  /  B ) ) ^ N ) )
5 recclap 8589 . . 3  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
6 mulexp 10508 . . 3  |-  ( ( A  e.  CC  /\  ( 1  /  B
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  x.  ( 1  /  B
) ) ^ N
)  =  ( ( A ^ N )  x.  ( ( 1  /  B ) ^ N ) ) )
75, 6syl3an2 1267 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  x.  ( 1  /  B
) ) ^ N
)  =  ( ( A ^ N )  x.  ( ( 1  /  B ) ^ N ) ) )
8 simp2l 1018 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  B  e.  CC )
9 simp2r 1019 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  B #  0 )
10 nn0z 9225 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
11103ad2ant3 1015 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
12 exprecap 10510 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0  /\  N  e.  ZZ )  ->  (
( 1  /  B
) ^ N )  =  ( 1  / 
( B ^ N
) ) )
138, 9, 11, 12syl3anc 1233 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( 1  /  B ) ^ N
)  =  ( 1  /  ( B ^ N ) ) )
1413oveq2d 5867 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  x.  (
( 1  /  B
) ^ N ) )  =  ( ( A ^ N )  x.  ( 1  / 
( B ^ N
) ) ) )
15 expcl 10487 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
16153adant2 1011 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
17 expcl 10487 . . . . . 6  |-  ( ( B  e.  CC  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
1817adantlr 474 . . . . 5  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
19183adant1 1010 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
20 expap0i 10501 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0  /\  N  e.  ZZ )  ->  ( B ^ N ) #  0 )
218, 9, 11, 20syl3anc 1233 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
) #  0 )
2216, 19, 21divrecapd 8703 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  /  ( B ^ N ) )  =  ( ( A ^ N )  x.  ( 1  /  ( B ^ N ) ) ) )
2314, 22eqtr4d 2206 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  x.  (
( 1  /  B
) ^ N ) )  =  ( ( A ^ N )  /  ( B ^ N ) ) )
244, 7, 233eqtrd 2207 1  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A ^ N )  /  ( B ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3987  (class class class)co 5851   CCcc 7765   0cc0 7767   1c1 7768    x. cmul 7772   # cap 8493    / cdiv 8582   NN0cn0 9128   ZZcz 9205   ^cexp 10468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-seqfrec 10395  df-exp 10469
This theorem is referenced by:  expdivapd  10616
  Copyright terms: Public domain W3C validator