ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdivap Unicode version

Theorem expdivap 10733
Description: Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expdivap  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A ^ N )  /  ( B ^ N ) ) )

Proof of Theorem expdivap
StepHypRef Expression
1 divrecap 8760 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
213expb 1206 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  /  B )  =  ( A  x.  ( 1  /  B ) ) )
323adant3 1019 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( A  /  B
)  =  ( A  x.  ( 1  /  B ) ) )
43oveq1d 5958 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A  x.  ( 1  /  B ) ) ^ N ) )
5 recclap 8751 . . 3  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
6 mulexp 10721 . . 3  |-  ( ( A  e.  CC  /\  ( 1  /  B
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  x.  ( 1  /  B
) ) ^ N
)  =  ( ( A ^ N )  x.  ( ( 1  /  B ) ^ N ) ) )
75, 6syl3an2 1283 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  x.  ( 1  /  B
) ) ^ N
)  =  ( ( A ^ N )  x.  ( ( 1  /  B ) ^ N ) ) )
8 simp2l 1025 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  B  e.  CC )
9 simp2r 1026 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  B #  0 )
10 nn0z 9391 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
11103ad2ant3 1022 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
12 exprecap 10723 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0  /\  N  e.  ZZ )  ->  (
( 1  /  B
) ^ N )  =  ( 1  / 
( B ^ N
) ) )
138, 9, 11, 12syl3anc 1249 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( 1  /  B ) ^ N
)  =  ( 1  /  ( B ^ N ) ) )
1413oveq2d 5959 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  x.  (
( 1  /  B
) ^ N ) )  =  ( ( A ^ N )  x.  ( 1  / 
( B ^ N
) ) ) )
15 expcl 10700 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
16153adant2 1018 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
17 expcl 10700 . . . . . 6  |-  ( ( B  e.  CC  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
1817adantlr 477 . . . . 5  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
19183adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  CC )
20 expap0i 10714 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0  /\  N  e.  ZZ )  ->  ( B ^ N ) #  0 )
218, 9, 11, 20syl3anc 1249 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( B ^ N
) #  0 )
2216, 19, 21divrecapd 8865 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  /  ( B ^ N ) )  =  ( ( A ^ N )  x.  ( 1  /  ( B ^ N ) ) ) )
2314, 22eqtr4d 2240 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A ^ N )  x.  (
( 1  /  B
) ^ N ) )  =  ( ( A ^ N )  /  ( B ^ N ) ) )
244, 7, 233eqtrd 2241 1  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  NN0 )  -> 
( ( A  /  B ) ^ N
)  =  ( ( A ^ N )  /  ( B ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    x. cmul 7929   # cap 8653    / cdiv 8744   NN0cn0 9294   ZZcz 9371   ^cexp 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-exp 10682
This theorem is referenced by:  expdivapd  10830
  Copyright terms: Public domain W3C validator