ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdeq Unicode version

Theorem lcmgcdeq 12605
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 12591 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
21simpld 112 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M lcm 
N ) )
32adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  ( M lcm  N ) )
4 gcddvds 12484 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
54simprd 114 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  N )
6 breq1 4086 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  N  <->  ( M  gcd  N ) 
||  N ) )
75, 6syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  N ) )
87imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  N )
9 lcmcl 12594 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
109nn0zd 9567 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
11 dvdstr 12339 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  N
)  ->  M  ||  N
) )
1210, 11syl3an2 1305 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
13123com12 1231 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
14133expb 1228 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1514anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1615adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
173, 8, 16mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  N
)
18 absdvdsb 12320 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
19 zabscl 11597 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
20 dvdsabsb 12321 . . . . . . 7  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2119, 20sylan 283 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2218, 21bitrd 188 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  ( abs `  N
) ) )
2322adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
2417, 23mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  ||  ( abs `  N ) )
251simprd 114 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M lcm 
N ) )
2625adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  ( M lcm  N ) )
274simpld 112 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  M )
28 breq1 4086 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  M  <->  ( M  gcd  N ) 
||  M ) )
2927, 28syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  M ) )
3029imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  M )
31 dvdstr 12339 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  M
)  ->  N  ||  M
) )
3210, 31syl3an2 1305 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
33323coml 1234 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
34333expb 1228 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3534anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3635adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
3726, 30, 36mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  M
)
38 absdvdsb 12320 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  M ) )
39 zabscl 11597 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
40 dvdsabsb 12321 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4139, 40sylan 283 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4238, 41bitrd 188 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4342ancoms 268 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4443adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( N  ||  M 
<->  ( abs `  N
)  ||  ( abs `  M ) ) )
4537, 44mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  N
)  ||  ( abs `  M ) )
46 nn0abscl 11596 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
47 nn0abscl 11596 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
4846, 47anim12i 338 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 ) )
49 dvdseq 12359 . . . . . 6  |-  ( ( ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 )  /\  ( ( abs `  M
)  ||  ( abs `  N )  /\  ( abs `  N )  ||  ( abs `  M ) ) )  ->  ( abs `  M )  =  ( abs `  N
) )
5048, 49sylan 283 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) ) )  -> 
( abs `  M
)  =  ( abs `  N ) )
5150ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
5251adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( ( abs `  M ) 
||  ( abs `  N
)  /\  ( abs `  N )  ||  ( abs `  M ) )  ->  ( abs `  M
)  =  ( abs `  N ) ) )
5324, 45, 52mp2and 433 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  =  ( abs `  N ) )
54 lcmid 12602 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
5519, 54syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
56 gcdid 12507 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5719, 56syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5855, 57eqtr4d 2265 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) ) )
59 oveq2 6009 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M ) lcm  ( abs `  M ) )  =  ( ( abs `  M ) lcm  ( abs `  N ) ) )
60 oveq2 6009 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M )  gcd  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6159, 60eqeq12d 2244 . . . . . 6  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) )  <->  ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M )  gcd  ( abs `  N ) ) ) )
6258, 61syl5ibcom 155 . . . . 5  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  ( abs `  N )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) ) )
6362imp 124 . . . 4  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  =  ( abs `  N
) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6463adantlr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
65 lcmabs 12598 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
66 gcdabs 12509 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
6765, 66eqeq12d 2244 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6867adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6964, 68mpbid 147 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( M lcm  N )  =  ( M  gcd  N ) )
7053, 69impbida 598 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   NN0cn0 9369   ZZcz 9446   abscabs 11508    || cdvds 12298    gcd cgcd 12474   lcm clcm 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-lcm 12583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator