| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcdeq | Unicode version | ||
| Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| lcmgcdeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslcm 12591 |
. . . . . . 7
| |
| 2 | 1 | simpld 112 |
. . . . . 6
|
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | gcddvds 12484 |
. . . . . . . 8
| |
| 5 | 4 | simprd 114 |
. . . . . . 7
|
| 6 | breq1 4086 |
. . . . . . 7
| |
| 7 | 5, 6 | syl5ibrcom 157 |
. . . . . 6
|
| 8 | 7 | imp 124 |
. . . . 5
|
| 9 | lcmcl 12594 |
. . . . . . . . . . 11
| |
| 10 | 9 | nn0zd 9567 |
. . . . . . . . . 10
|
| 11 | dvdstr 12339 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl3an2 1305 |
. . . . . . . . 9
|
| 13 | 12 | 3com12 1231 |
. . . . . . . 8
|
| 14 | 13 | 3expb 1228 |
. . . . . . 7
|
| 15 | 14 | anidms 397 |
. . . . . 6
|
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | 3, 8, 16 | mp2and 433 |
. . . 4
|
| 18 | absdvdsb 12320 |
. . . . . 6
| |
| 19 | zabscl 11597 |
. . . . . . 7
| |
| 20 | dvdsabsb 12321 |
. . . . . . 7
| |
| 21 | 19, 20 | sylan 283 |
. . . . . 6
|
| 22 | 18, 21 | bitrd 188 |
. . . . 5
|
| 23 | 22 | adantr 276 |
. . . 4
|
| 24 | 17, 23 | mpbid 147 |
. . 3
|
| 25 | 1 | simprd 114 |
. . . . . 6
|
| 26 | 25 | adantr 276 |
. . . . 5
|
| 27 | 4 | simpld 112 |
. . . . . . 7
|
| 28 | breq1 4086 |
. . . . . . 7
| |
| 29 | 27, 28 | syl5ibrcom 157 |
. . . . . 6
|
| 30 | 29 | imp 124 |
. . . . 5
|
| 31 | dvdstr 12339 |
. . . . . . . . . 10
| |
| 32 | 10, 31 | syl3an2 1305 |
. . . . . . . . 9
|
| 33 | 32 | 3coml 1234 |
. . . . . . . 8
|
| 34 | 33 | 3expb 1228 |
. . . . . . 7
|
| 35 | 34 | anidms 397 |
. . . . . 6
|
| 36 | 35 | adantr 276 |
. . . . 5
|
| 37 | 26, 30, 36 | mp2and 433 |
. . . 4
|
| 38 | absdvdsb 12320 |
. . . . . . 7
| |
| 39 | zabscl 11597 |
. . . . . . . 8
| |
| 40 | dvdsabsb 12321 |
. . . . . . . 8
| |
| 41 | 39, 40 | sylan 283 |
. . . . . . 7
|
| 42 | 38, 41 | bitrd 188 |
. . . . . 6
|
| 43 | 42 | ancoms 268 |
. . . . 5
|
| 44 | 43 | adantr 276 |
. . . 4
|
| 45 | 37, 44 | mpbid 147 |
. . 3
|
| 46 | nn0abscl 11596 |
. . . . . . 7
| |
| 47 | nn0abscl 11596 |
. . . . . . 7
| |
| 48 | 46, 47 | anim12i 338 |
. . . . . 6
|
| 49 | dvdseq 12359 |
. . . . . 6
| |
| 50 | 48, 49 | sylan 283 |
. . . . 5
|
| 51 | 50 | ex 115 |
. . . 4
|
| 52 | 51 | adantr 276 |
. . 3
|
| 53 | 24, 45, 52 | mp2and 433 |
. 2
|
| 54 | lcmid 12602 |
. . . . . . . 8
| |
| 55 | 19, 54 | syl 14 |
. . . . . . 7
|
| 56 | gcdid 12507 |
. . . . . . . 8
| |
| 57 | 19, 56 | syl 14 |
. . . . . . 7
|
| 58 | 55, 57 | eqtr4d 2265 |
. . . . . 6
|
| 59 | oveq2 6009 |
. . . . . . 7
| |
| 60 | oveq2 6009 |
. . . . . . 7
| |
| 61 | 59, 60 | eqeq12d 2244 |
. . . . . 6
|
| 62 | 58, 61 | syl5ibcom 155 |
. . . . 5
|
| 63 | 62 | imp 124 |
. . . 4
|
| 64 | 63 | adantlr 477 |
. . 3
|
| 65 | lcmabs 12598 |
. . . . 5
| |
| 66 | gcdabs 12509 |
. . . . 5
| |
| 67 | 65, 66 | eqeq12d 2244 |
. . . 4
|
| 68 | 67 | adantr 276 |
. . 3
|
| 69 | 64, 68 | mpbid 147 |
. 2
|
| 70 | 53, 69 | impbida 598 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-dvds 12299 df-gcd 12475 df-lcm 12583 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |