ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdeq Unicode version

Theorem lcmgcdeq 12221
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 12207 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
21simpld 112 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M lcm 
N ) )
32adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  ( M lcm  N ) )
4 gcddvds 12100 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
54simprd 114 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  N )
6 breq1 4032 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  N  <->  ( M  gcd  N ) 
||  N ) )
75, 6syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  N ) )
87imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  N )
9 lcmcl 12210 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
109nn0zd 9437 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
11 dvdstr 11971 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  N
)  ->  M  ||  N
) )
1210, 11syl3an2 1283 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
13123com12 1209 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
14133expb 1206 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1514anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1615adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
173, 8, 16mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  N
)
18 absdvdsb 11952 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
19 zabscl 11230 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
20 dvdsabsb 11953 . . . . . . 7  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2119, 20sylan 283 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2218, 21bitrd 188 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  ( abs `  N
) ) )
2322adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
2417, 23mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  ||  ( abs `  N ) )
251simprd 114 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M lcm 
N ) )
2625adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  ( M lcm  N ) )
274simpld 112 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  M )
28 breq1 4032 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  M  <->  ( M  gcd  N ) 
||  M ) )
2927, 28syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  M ) )
3029imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  M )
31 dvdstr 11971 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  M
)  ->  N  ||  M
) )
3210, 31syl3an2 1283 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
33323coml 1212 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
34333expb 1206 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3534anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3635adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
3726, 30, 36mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  M
)
38 absdvdsb 11952 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  M ) )
39 zabscl 11230 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
40 dvdsabsb 11953 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4139, 40sylan 283 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4238, 41bitrd 188 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4342ancoms 268 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4443adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( N  ||  M 
<->  ( abs `  N
)  ||  ( abs `  M ) ) )
4537, 44mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  N
)  ||  ( abs `  M ) )
46 nn0abscl 11229 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
47 nn0abscl 11229 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
4846, 47anim12i 338 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 ) )
49 dvdseq 11990 . . . . . 6  |-  ( ( ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 )  /\  ( ( abs `  M
)  ||  ( abs `  N )  /\  ( abs `  N )  ||  ( abs `  M ) ) )  ->  ( abs `  M )  =  ( abs `  N
) )
5048, 49sylan 283 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) ) )  -> 
( abs `  M
)  =  ( abs `  N ) )
5150ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
5251adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( ( abs `  M ) 
||  ( abs `  N
)  /\  ( abs `  N )  ||  ( abs `  M ) )  ->  ( abs `  M
)  =  ( abs `  N ) ) )
5324, 45, 52mp2and 433 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  =  ( abs `  N ) )
54 lcmid 12218 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
5519, 54syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
56 gcdid 12123 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5719, 56syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5855, 57eqtr4d 2229 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) ) )
59 oveq2 5926 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M ) lcm  ( abs `  M ) )  =  ( ( abs `  M ) lcm  ( abs `  N ) ) )
60 oveq2 5926 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M )  gcd  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6159, 60eqeq12d 2208 . . . . . 6  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) )  <->  ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M )  gcd  ( abs `  N ) ) ) )
6258, 61syl5ibcom 155 . . . . 5  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  ( abs `  N )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) ) )
6362imp 124 . . . 4  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  =  ( abs `  N
) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6463adantlr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
65 lcmabs 12214 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
66 gcdabs 12125 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
6765, 66eqeq12d 2208 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6867adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6964, 68mpbid 147 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( M lcm  N )  =  ( M  gcd  N ) )
7053, 69impbida 596 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   NN0cn0 9240   ZZcz 9317   abscabs 11141    || cdvds 11930    gcd cgcd 12079   lcm clcm 12198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-lcm 12199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator