ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdeq Unicode version

Theorem lcmgcdeq 12405
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 12391 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
21simpld 112 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M lcm 
N ) )
32adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  ( M lcm  N ) )
4 gcddvds 12284 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
54simprd 114 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  N )
6 breq1 4047 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  N  <->  ( M  gcd  N ) 
||  N ) )
75, 6syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  N ) )
87imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  N )
9 lcmcl 12394 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
109nn0zd 9493 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
11 dvdstr 12139 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  N
)  ->  M  ||  N
) )
1210, 11syl3an2 1284 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
13123com12 1210 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
14133expb 1207 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1514anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  N )  ->  M  ||  N ) )
1615adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  N )  ->  M  ||  N
) )
173, 8, 16mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  M  ||  N
)
18 absdvdsb 12120 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
19 zabscl 11397 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
20 dvdsabsb 12121 . . . . . . 7  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2119, 20sylan 283 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
2218, 21bitrd 188 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  ( abs `  N
) ) )
2322adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
2417, 23mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  ||  ( abs `  N ) )
251simprd 114 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M lcm 
N ) )
2625adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  ( M lcm  N ) )
274simpld 112 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  ||  M )
28 breq1 4047 . . . . . . 7  |-  ( ( M lcm  N )  =  ( M  gcd  N
)  ->  ( ( M lcm  N )  ||  M  <->  ( M  gcd  N ) 
||  M ) )
2927, 28syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  -> 
( M lcm  N ) 
||  M ) )
3029imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( M lcm  N
)  ||  M )
31 dvdstr 12139 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  ( M lcm  N )  /\  ( M lcm  N )  ||  M
)  ->  N  ||  M
) )
3210, 31syl3an2 1284 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
33323coml 1213 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
34333expb 1207 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3534anidms 397 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  ||  ( M lcm  N )  /\  ( M lcm  N ) 
||  M )  ->  N  ||  M ) )
3635adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( N 
||  ( M lcm  N
)  /\  ( M lcm  N )  ||  M )  ->  N  ||  M
) )
3726, 30, 36mp2and 433 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  N  ||  M
)
38 absdvdsb 12120 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  M ) )
39 zabscl 11397 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
40 dvdsabsb 12121 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4139, 40sylan 283 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N
)  ||  M  <->  ( abs `  N )  ||  ( abs `  M ) ) )
4238, 41bitrd 188 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4342ancoms 268 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  M  <->  ( abs `  N ) 
||  ( abs `  M
) ) )
4443adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( N  ||  M 
<->  ( abs `  N
)  ||  ( abs `  M ) ) )
4537, 44mpbid 147 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  N
)  ||  ( abs `  M ) )
46 nn0abscl 11396 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
47 nn0abscl 11396 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
4846, 47anim12i 338 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 ) )
49 dvdseq 12159 . . . . . 6  |-  ( ( ( ( abs `  M
)  e.  NN0  /\  ( abs `  N )  e.  NN0 )  /\  ( ( abs `  M
)  ||  ( abs `  N )  /\  ( abs `  N )  ||  ( abs `  M ) ) )  ->  ( abs `  M )  =  ( abs `  N
) )
5048, 49sylan 283 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) ) )  -> 
( abs `  M
)  =  ( abs `  N ) )
5150ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M )  ||  ( abs `  N )  /\  ( abs `  N ) 
||  ( abs `  M
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
5251adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( ( ( abs `  M ) 
||  ( abs `  N
)  /\  ( abs `  N )  ||  ( abs `  M ) )  ->  ( abs `  M
)  =  ( abs `  N ) ) )
5324, 45, 52mp2and 433 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M lcm  N
)  =  ( M  gcd  N ) )  ->  ( abs `  M
)  =  ( abs `  N ) )
54 lcmid 12402 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
5519, 54syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( abs `  ( abs `  M ) ) )
56 gcdid 12307 . . . . . . . 8  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5719, 56syl 14 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  gcd  ( abs `  M ) )  =  ( abs `  ( abs `  M ) ) )
5855, 57eqtr4d 2241 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) ) )
59 oveq2 5952 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M ) lcm  ( abs `  M ) )  =  ( ( abs `  M ) lcm  ( abs `  N ) ) )
60 oveq2 5952 . . . . . . 7  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( ( abs `  M )  gcd  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6159, 60eqeq12d 2220 . . . . . 6  |-  ( ( abs `  M )  =  ( abs `  N
)  ->  ( (
( abs `  M
) lcm  ( abs `  M
) )  =  ( ( abs `  M
)  gcd  ( abs `  M ) )  <->  ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M )  gcd  ( abs `  N ) ) ) )
6258, 61syl5ibcom 155 . . . . 5  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  ( abs `  N )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) ) )
6362imp 124 . . . 4  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  =  ( abs `  N
) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
6463adantlr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( abs `  M
) lcm  ( abs `  N
) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) ) )
65 lcmabs 12398 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
66 gcdabs 12309 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
6765, 66eqeq12d 2220 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6867adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  =  ( ( abs `  M
)  gcd  ( abs `  N ) )  <->  ( M lcm  N )  =  ( M  gcd  N ) ) )
6964, 68mpbid 147 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( abs `  M
)  =  ( abs `  N ) )  -> 
( M lcm  N )  =  ( M  gcd  N ) )
7053, 69impbida 596 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M  gcd  N )  <->  ( abs `  M )  =  ( abs `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   NN0cn0 9295   ZZcz 9372   abscabs 11308    || cdvds 12098    gcd cgcd 12274   lcm clcm 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-lcm 12383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator