ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcomlem Unicode version

Theorem mulgaddcomlem 13102
Description: Lemma for mulgaddcom 13103. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b  |-  B  =  ( Base `  G
)
mulgaddcom.t  |-  .x.  =  (.g
`  G )
mulgaddcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgaddcomlem  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  G  e.  Grp )
21adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  G  e.  Grp )
3 simp3 1001 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  X  e.  B )
43adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  X  e.  B
)
5 znegcl 9315 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6 mulgaddcom.b . . . . . . . 8  |-  B  =  ( Base `  G
)
7 mulgaddcom.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
86, 7mulgcl 13096 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  e.  B
)
95, 8syl3an2 1283 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  e.  B )
109adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  e.  B
)
11 eqid 2189 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
126, 11grpinvcl 13007 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  G ) `  X
)  e.  B )
13123adant2 1018 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( invg `  G ) `  X
)  e.  B )
1413adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 X )  e.  B )
15 mulgaddcom.p . . . . . 6  |-  .+  =  ( +g  `  G )
166, 15grpass 12969 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( -u y  .x.  X )  e.  B  /\  ( ( invg `  G ) `  X
)  e.  B ) )  ->  ( ( X  .+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  ( X  .+  ( (
-u y  .x.  X
)  .+  ( ( invg `  G ) `
 X ) ) ) )
172, 4, 10, 14, 16syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  ( X  .+  ( (
-u y  .x.  X
)  .+  ( ( invg `  G ) `
 X ) ) ) )
186, 7, 11mulgneg 13097 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( ( invg `  G ) `
 ( y  .x.  X ) ) )
1918adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( ( invg `  G ) `  (
y  .x.  X )
) )
2019oveq1d 5912 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  ( ( invg `  G ) `  X
) )  =  ( ( ( invg `  G ) `  (
y  .x.  X )
)  .+  ( ( invg `  G ) `
 X ) ) )
216, 7mulgcl 13096 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
2221adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( y  .x.  X )  e.  B
)
236, 15, 11grpinvadd 13037 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( y  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 ( y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) ) )
242, 4, 22, 23syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 ( y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) ) )
2519oveq2d 5913 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( invg `  G
) `  X )  .+  ( -u y  .x.  X ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( ( invg `  G ) `  (
y  .x.  X )
) ) )
266, 15, 11grpinvadd 13037 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )  ->  ( ( invg `  G ) `  (
( y  .x.  X
)  .+  X )
)  =  ( ( ( invg `  G ) `  X
)  .+  ( ( invg `  G ) `
 ( y  .x.  X ) ) ) )
272, 22, 4, 26syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( ( y 
.x.  X )  .+  X ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( ( invg `  G ) `  (
y  .x.  X )
) ) )
28 fveq2 5534 . . . . . . . 8  |-  ( ( ( y  .x.  X
)  .+  X )  =  ( X  .+  ( y  .x.  X
) )  ->  (
( invg `  G ) `  (
( y  .x.  X
)  .+  X )
)  =  ( ( invg `  G
) `  ( X  .+  ( y  .x.  X
) ) ) )
2928adantl 277 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( ( y 
.x.  X )  .+  X ) )  =  ( ( invg `  G ) `  ( X  .+  ( y  .x.  X ) ) ) )
3025, 27, 293eqtr2rd 2229 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )
3120, 24, 303eqtr2d 2228 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  ( ( invg `  G ) `  X
) )  =  ( ( ( invg `  G ) `  X
)  .+  ( -u y  .x.  X ) ) )
3231oveq2d 5913 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( -u y  .x.  X )  .+  (
( invg `  G ) `  X
) ) )  =  ( X  .+  (
( ( invg `  G ) `  X
)  .+  ( -u y  .x.  X ) ) ) )
336, 15, 11grpasscan1 13022 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( -u y  .x.  X
)  e.  B )  ->  ( X  .+  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )  =  ( -u y  .x.  X ) )
342, 4, 10, 33syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )  =  ( -u y  .x.  X ) )
3517, 32, 343eqtrd 2226 . . 3  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  (
-u y  .x.  X
) )
3635oveq1d 5912 . 2  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( X  .+  ( -u y  .x.  X ) ) 
.+  ( ( invg `  G ) `
 X ) ) 
.+  X )  =  ( ( -u y  .x.  X )  .+  X
) )
376, 15grpcl 12968 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( -u y  .x.  X
)  e.  B )  ->  ( X  .+  ( -u y  .x.  X
) )  e.  B
)
381, 3, 9, 37syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( X  .+  ( -u y  .x.  X ) )  e.  B )
3938adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( -u y  .x.  X
) )  e.  B
)
406, 15, 11grpasscan2 13023 . . 3  |-  ( ( G  e.  Grp  /\  ( X  .+  ( -u y  .x.  X ) )  e.  B  /\  X  e.  B )  ->  (
( ( X  .+  ( -u y  .x.  X
) )  .+  (
( invg `  G ) `  X
) )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) )
412, 39, 4, 40syl3anc 1249 . 2  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( X  .+  ( -u y  .x.  X ) ) 
.+  ( ( invg `  G ) `
 X ) ) 
.+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
4236, 41eqtr3d 2224 1  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   -ucneg 8160   ZZcz 9284   Basecbs 12515   +g cplusg 12592   Grpcgrp 12960   invgcminusg 12961  .gcmg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-seqfrec 10479  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-mulg 13077
This theorem is referenced by:  mulgaddcom  13103
  Copyright terms: Public domain W3C validator