| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgaddcomlem | Unicode version | ||
| Description: Lemma for mulgaddcom 13567. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| mulgaddcom.b |
|
| mulgaddcom.t |
|
| mulgaddcom.p |
|
| Ref | Expression |
|---|---|
| mulgaddcomlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | simp3 1002 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | znegcl 9433 |
. . . . . . 7
| |
| 6 | mulgaddcom.b |
. . . . . . . 8
| |
| 7 | mulgaddcom.t |
. . . . . . . 8
| |
| 8 | 6, 7 | mulgcl 13560 |
. . . . . . 7
|
| 9 | 5, 8 | syl3an2 1284 |
. . . . . 6
|
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | eqid 2206 |
. . . . . . . 8
| |
| 12 | 6, 11 | grpinvcl 13465 |
. . . . . . 7
|
| 13 | 12 | 3adant2 1019 |
. . . . . 6
|
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | mulgaddcom.p |
. . . . . 6
| |
| 16 | 6, 15 | grpass 13426 |
. . . . 5
|
| 17 | 2, 4, 10, 14, 16 | syl13anc 1252 |
. . . 4
|
| 18 | 6, 7, 11 | mulgneg 13561 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | 19 | oveq1d 5977 |
. . . . . 6
|
| 21 | 6, 7 | mulgcl 13560 |
. . . . . . . 8
|
| 22 | 21 | adantr 276 |
. . . . . . 7
|
| 23 | 6, 15, 11 | grpinvadd 13495 |
. . . . . . 7
|
| 24 | 2, 4, 22, 23 | syl3anc 1250 |
. . . . . 6
|
| 25 | 19 | oveq2d 5978 |
. . . . . . 7
|
| 26 | 6, 15, 11 | grpinvadd 13495 |
. . . . . . . 8
|
| 27 | 2, 22, 4, 26 | syl3anc 1250 |
. . . . . . 7
|
| 28 | fveq2 5594 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 25, 27, 29 | 3eqtr2rd 2246 |
. . . . . 6
|
| 31 | 20, 24, 30 | 3eqtr2d 2245 |
. . . . 5
|
| 32 | 31 | oveq2d 5978 |
. . . 4
|
| 33 | 6, 15, 11 | grpasscan1 13480 |
. . . . 5
|
| 34 | 2, 4, 10, 33 | syl3anc 1250 |
. . . 4
|
| 35 | 17, 32, 34 | 3eqtrd 2243 |
. . 3
|
| 36 | 35 | oveq1d 5977 |
. 2
|
| 37 | 6, 15 | grpcl 13425 |
. . . . 5
|
| 38 | 1, 3, 9, 37 | syl3anc 1250 |
. . . 4
|
| 39 | 38 | adantr 276 |
. . 3
|
| 40 | 6, 15, 11 | grpasscan2 13481 |
. . 3
|
| 41 | 2, 39, 4, 40 | syl3anc 1250 |
. 2
|
| 42 | 36, 41 | eqtr3d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-2 9125 df-n0 9326 df-z 9403 df-uz 9679 df-seqfrec 10625 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-mulg 13541 |
| This theorem is referenced by: mulgaddcom 13567 |
| Copyright terms: Public domain | W3C validator |