Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgaddcomlem | Unicode version |
Description: Lemma for mulgaddcom 12857. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
Ref | Expression |
---|---|
mulgaddcom.b | |
mulgaddcom.t | .g |
mulgaddcom.p |
Ref | Expression |
---|---|
mulgaddcomlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 993 | . . . . . 6 | |
2 | 1 | adantr 274 | . . . . 5 |
3 | simp3 995 | . . . . . 6 | |
4 | 3 | adantr 274 | . . . . 5 |
5 | znegcl 9247 | . . . . . . 7 | |
6 | mulgaddcom.b | . . . . . . . 8 | |
7 | mulgaddcom.t | . . . . . . . 8 .g | |
8 | 6, 7 | mulgcl 12851 | . . . . . . 7 |
9 | 5, 8 | syl3an2 1268 | . . . . . 6 |
10 | 9 | adantr 274 | . . . . 5 |
11 | eqid 2171 | . . . . . . . 8 | |
12 | 6, 11 | grpinvcl 12773 | . . . . . . 7 |
13 | 12 | 3adant2 1012 | . . . . . 6 |
14 | 13 | adantr 274 | . . . . 5 |
15 | mulgaddcom.p | . . . . . 6 | |
16 | 6, 15 | grpass 12739 | . . . . 5 |
17 | 2, 4, 10, 14, 16 | syl13anc 1236 | . . . 4 |
18 | 6, 7, 11 | mulgneg 12852 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | 19 | oveq1d 5872 | . . . . . 6 |
21 | 6, 7 | mulgcl 12851 | . . . . . . . 8 |
22 | 21 | adantr 274 | . . . . . . 7 |
23 | 6, 15, 11 | grpinvadd 12799 | . . . . . . 7 |
24 | 2, 4, 22, 23 | syl3anc 1234 | . . . . . 6 |
25 | 19 | oveq2d 5873 | . . . . . . 7 |
26 | 6, 15, 11 | grpinvadd 12799 | . . . . . . . 8 |
27 | 2, 22, 4, 26 | syl3anc 1234 | . . . . . . 7 |
28 | fveq2 5499 | . . . . . . . 8 | |
29 | 28 | adantl 275 | . . . . . . 7 |
30 | 25, 27, 29 | 3eqtr2rd 2211 | . . . . . 6 |
31 | 20, 24, 30 | 3eqtr2d 2210 | . . . . 5 |
32 | 31 | oveq2d 5873 | . . . 4 |
33 | 6, 15, 11 | grpasscan1 12784 | . . . . 5 |
34 | 2, 4, 10, 33 | syl3anc 1234 | . . . 4 |
35 | 17, 32, 34 | 3eqtrd 2208 | . . 3 |
36 | 35 | oveq1d 5872 | . 2 |
37 | 6, 15 | grpcl 12738 | . . . . 5 |
38 | 1, 3, 9, 37 | syl3anc 1234 | . . . 4 |
39 | 38 | adantr 274 | . . 3 |
40 | 6, 15, 11 | grpasscan2 12785 | . . 3 |
41 | 2, 39, 4, 40 | syl3anc 1234 | . 2 |
42 | 36, 41 | eqtr3d 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 974 wceq 1349 wcel 2142 cfv 5200 (class class class)co 5857 cneg 8095 cz 9216 cbs 12420 cplusg 12484 cgrp 12730 cminusg 12731 .gcmg 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-distr 7882 ax-i2m1 7883 ax-0lt1 7884 ax-0id 7886 ax-rnegex 7887 ax-cnre 7889 ax-pre-ltirr 7890 ax-pre-ltwlin 7891 ax-pre-lttrn 7892 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-iord 4352 df-on 4354 df-ilim 4355 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-recs 6288 df-frec 6374 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 df-sub 8096 df-neg 8097 df-inn 8883 df-2 8941 df-n0 9140 df-z 9217 df-uz 9492 df-seqfrec 10406 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 df-mulg 12835 |
This theorem is referenced by: mulgaddcom 12857 |
Copyright terms: Public domain | W3C validator |