ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcomlem Unicode version

Theorem mulgaddcomlem 13215
Description: Lemma for mulgaddcom 13216. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b  |-  B  =  ( Base `  G
)
mulgaddcom.t  |-  .x.  =  (.g
`  G )
mulgaddcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgaddcomlem  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  G  e.  Grp )
21adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  G  e.  Grp )
3 simp3 1001 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  X  e.  B )
43adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  X  e.  B
)
5 znegcl 9348 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6 mulgaddcom.b . . . . . . . 8  |-  B  =  ( Base `  G
)
7 mulgaddcom.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
86, 7mulgcl 13209 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  e.  B
)
95, 8syl3an2 1283 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  e.  B )
109adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  e.  B
)
11 eqid 2193 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
126, 11grpinvcl 13120 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  G ) `  X
)  e.  B )
13123adant2 1018 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( invg `  G ) `  X
)  e.  B )
1413adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 X )  e.  B )
15 mulgaddcom.p . . . . . 6  |-  .+  =  ( +g  `  G )
166, 15grpass 13081 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( -u y  .x.  X )  e.  B  /\  ( ( invg `  G ) `  X
)  e.  B ) )  ->  ( ( X  .+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  ( X  .+  ( (
-u y  .x.  X
)  .+  ( ( invg `  G ) `
 X ) ) ) )
172, 4, 10, 14, 16syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  ( X  .+  ( (
-u y  .x.  X
)  .+  ( ( invg `  G ) `
 X ) ) ) )
186, 7, 11mulgneg 13210 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( ( invg `  G ) `
 ( y  .x.  X ) ) )
1918adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( ( invg `  G ) `  (
y  .x.  X )
) )
2019oveq1d 5933 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  ( ( invg `  G ) `  X
) )  =  ( ( ( invg `  G ) `  (
y  .x.  X )
)  .+  ( ( invg `  G ) `
 X ) ) )
216, 7mulgcl 13209 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
2221adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( y  .x.  X )  e.  B
)
236, 15, 11grpinvadd 13150 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( y  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 ( y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) ) )
242, 4, 22, 23syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 ( y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) ) )
2519oveq2d 5934 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( invg `  G
) `  X )  .+  ( -u y  .x.  X ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( ( invg `  G ) `  (
y  .x.  X )
) ) )
266, 15, 11grpinvadd 13150 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )  ->  ( ( invg `  G ) `  (
( y  .x.  X
)  .+  X )
)  =  ( ( ( invg `  G ) `  X
)  .+  ( ( invg `  G ) `
 ( y  .x.  X ) ) ) )
272, 22, 4, 26syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( ( y 
.x.  X )  .+  X ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( ( invg `  G ) `  (
y  .x.  X )
) ) )
28 fveq2 5554 . . . . . . . 8  |-  ( ( ( y  .x.  X
)  .+  X )  =  ( X  .+  ( y  .x.  X
) )  ->  (
( invg `  G ) `  (
( y  .x.  X
)  .+  X )
)  =  ( ( invg `  G
) `  ( X  .+  ( y  .x.  X
) ) ) )
2928adantl 277 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( ( y 
.x.  X )  .+  X ) )  =  ( ( invg `  G ) `  ( X  .+  ( y  .x.  X ) ) ) )
3025, 27, 293eqtr2rd 2233 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( invg `  G ) `
 ( X  .+  ( y  .x.  X
) ) )  =  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )
3120, 24, 303eqtr2d 2232 . . . . 5  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  ( ( invg `  G ) `  X
) )  =  ( ( ( invg `  G ) `  X
)  .+  ( -u y  .x.  X ) ) )
3231oveq2d 5934 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( -u y  .x.  X )  .+  (
( invg `  G ) `  X
) ) )  =  ( X  .+  (
( ( invg `  G ) `  X
)  .+  ( -u y  .x.  X ) ) ) )
336, 15, 11grpasscan1 13135 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( -u y  .x.  X
)  e.  B )  ->  ( X  .+  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )  =  ( -u y  .x.  X ) )
342, 4, 10, 33syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( ( invg `  G ) `
 X )  .+  ( -u y  .x.  X
) ) )  =  ( -u y  .x.  X ) )
3517, 32, 343eqtrd 2230 . . 3  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( -u y  .x.  X ) )  .+  ( ( invg `  G ) `  X
) )  =  (
-u y  .x.  X
) )
3635oveq1d 5933 . 2  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( X  .+  ( -u y  .x.  X ) ) 
.+  ( ( invg `  G ) `
 X ) ) 
.+  X )  =  ( ( -u y  .x.  X )  .+  X
) )
376, 15grpcl 13080 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( -u y  .x.  X
)  e.  B )  ->  ( X  .+  ( -u y  .x.  X
) )  e.  B
)
381, 3, 9, 37syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( X  .+  ( -u y  .x.  X ) )  e.  B )
3938adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( -u y  .x.  X
) )  e.  B
)
406, 15, 11grpasscan2 13136 . . 3  |-  ( ( G  e.  Grp  /\  ( X  .+  ( -u y  .x.  X ) )  e.  B  /\  X  e.  B )  ->  (
( ( X  .+  ( -u y  .x.  X
) )  .+  (
( invg `  G ) `  X
) )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) )
412, 39, 4, 40syl3anc 1249 . 2  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( X  .+  ( -u y  .x.  X ) ) 
.+  ( ( invg `  G ) `
 X ) ) 
.+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
4236, 41eqtr3d 2228 1  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   -ucneg 8191   ZZcz 9317   Basecbs 12618   +g cplusg 12695   Grpcgrp 13072   invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgaddcom  13216
  Copyright terms: Public domain W3C validator