ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoshftral Unicode version

Theorem fzoshftral 10367
Description: Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10230. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
fzoshftral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M..^ N ) ph  <->  A. k  e.  ( ( M  +  K )..^ ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Distinct variable groups:    j, K, k   
j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzoshftral
StepHypRef Expression
1 fzoval 10270 . . . 4  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
213ad2ant2 1022 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
32raleqdv 2708 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M..^ N ) ph  <->  A. j  e.  ( M ... ( N  -  1 ) ) ph ) )
4 peano2zm 9410 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
5 fzshftral 10230 . . 3  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... ( N  -  1 ) ) ph  <->  A. k  e.  ( ( M  +  K ) ... (
( N  -  1 )  +  K ) ) [. ( k  -  K )  / 
j ]. ph ) )
64, 5syl3an2 1284 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... ( N  - 
1 ) ) ph  <->  A. k  e.  ( ( M  +  K ) ... ( ( N  -  1 )  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
7 zaddcl 9412 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
873adant1 1018 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
9 fzoval 10270 . . . . 5  |-  ( ( N  +  K )  e.  ZZ  ->  (
( M  +  K
)..^ ( N  +  K ) )  =  ( ( M  +  K ) ... (
( N  +  K
)  -  1 ) ) )
108, 9syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
)..^ ( N  +  K ) )  =  ( ( M  +  K ) ... (
( N  +  K
)  -  1 ) ) )
11 zcn 9377 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantr 276 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  CC )
13 zcn 9377 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
1413adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  CC )
15 1cnd 8088 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  1  e.  CC )
1612, 14, 15addsubd 8404 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( N  +  K )  -  1 )  =  ( ( N  -  1 )  +  K ) )
17163adant1 1018 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( N  +  K
)  -  1 )  =  ( ( N  -  1 )  +  K ) )
1817oveq2d 5960 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
) ... ( ( N  +  K )  - 
1 ) )  =  ( ( M  +  K ) ... (
( N  -  1 )  +  K ) ) )
1910, 18eqtr2d 2239 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
) ... ( ( N  -  1 )  +  K ) )  =  ( ( M  +  K )..^ ( N  +  K ) ) )
2019raleqdv 2708 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( M  +  K
) ... ( ( N  -  1 )  +  K ) ) [. ( k  -  K
)  /  j ]. ph  <->  A. k  e.  ( ( M  +  K )..^ ( N  +  K
) ) [. (
k  -  K )  /  j ]. ph )
)
213, 6, 203bitrd 214 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M..^ N ) ph  <->  A. k  e.  ( ( M  +  K )..^ ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   [.wsbc 2998  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    - cmin 8243   ZZcz 9372   ...cfz 10130  ..^cfzo 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by:  swrdspsleq  11120
  Copyright terms: Public domain W3C validator