ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdivap Unicode version

Theorem imdivap 11192
Description: Imaginary part of a division. Related to immul2 11191. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
imdivap  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Im `  ( A  /  B ) )  =  ( ( Im `  A )  /  B
) )

Proof of Theorem imdivap
StepHypRef Expression
1 ancom 266 . . . . 5  |-  ( ( ( B  e.  RR  /\  B #  0 )  /\  A  e.  CC )  <->  ( A  e.  CC  /\  ( B  e.  RR  /\  B #  0 ) ) )
2 3anass 985 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  <->  ( A  e.  CC  /\  ( B  e.  RR  /\  B #  0 ) ) )
31, 2bitr4i 187 . . . 4  |-  ( ( ( B  e.  RR  /\  B #  0 )  /\  A  e.  CC )  <->  ( A  e.  CC  /\  B  e.  RR  /\  B #  0 ) )
4 rerecclap 8803 . . . . 5  |-  ( ( B  e.  RR  /\  B #  0 )  ->  (
1  /  B )  e.  RR )
54anim1i 340 . . . 4  |-  ( ( ( B  e.  RR  /\  B #  0 )  /\  A  e.  CC )  ->  ( ( 1  /  B )  e.  RR  /\  A  e.  CC ) )
63, 5sylbir 135 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( 1  /  B
)  e.  RR  /\  A  e.  CC )
)
7 immul2 11191 . . 3  |-  ( ( ( 1  /  B
)  e.  RR  /\  A  e.  CC )  ->  ( Im `  (
( 1  /  B
)  x.  A ) )  =  ( ( 1  /  B )  x.  ( Im `  A ) ) )
86, 7syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Im `  ( (
1  /  B )  x.  A ) )  =  ( ( 1  /  B )  x.  ( Im `  A
) ) )
9 recn 8058 . . 3  |-  ( B  e.  RR  ->  B  e.  CC )
10 divrecap2 8762 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( ( 1  /  B )  x.  A
) )
1110fveq2d 5580 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
Im `  ( A  /  B ) )  =  ( Im `  (
( 1  /  B
)  x.  A ) ) )
129, 11syl3an2 1284 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Im `  ( A  /  B ) )  =  ( Im `  (
( 1  /  B
)  x.  A ) ) )
13 imcl 11165 . . . . 5  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1413recnd 8101 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
15143ad2ant1 1021 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Im `  A )  e.  CC )
1693ad2ant2 1022 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  B  e.  CC )
17 simp3 1002 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  B #  0 )
1815, 16, 17divrecap2d 8867 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( Im `  A
)  /  B )  =  ( ( 1  /  B )  x.  ( Im `  A
) ) )
198, 12, 183eqtr4d 2248 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Im `  ( A  /  B ) )  =  ( ( Im `  A )  /  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930   # cap 8654    / cdiv 8745   Imcim 11152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-2 9095  df-cj 11153  df-re 11154  df-im 11155
This theorem is referenced by:  imdivapd  11286
  Copyright terms: Public domain W3C validator