ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpf2 Unicode version

Theorem cnpf2 13001
Description: A continuous function at point  P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnpf2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )

Proof of Theorem cnpf2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 994 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F  e.  ( ( J  CnP  K ) `  P ) )
2 topontop 12806 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3 cnprcl2k 13000 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
42, 3syl3an2 1267 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  P  e.  X )
5 iscnp 12993 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
64, 5syld3an3 1278 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
71, 6mpbid 146 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F : X --> Y  /\  A. a  e.  K  (
( F `  P
)  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b
)  C_  a )
) ) )
87simpld 111 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   "cima 4614   -->wf 5194   ` cfv 5198  (class class class)co 5853   Topctop 12789  TopOnctopon 12802    CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cnp 12983
This theorem is referenced by:  iscnp4  13012  cnptopco  13016  cncnp2m  13025  cnptopresti  13032  lmtopcnp  13044  txcnp  13065  metcnpi3  13311  cnplimcim  13430  limccnpcntop  13438  limccnp2lem  13439  limccnp2cntop  13440
  Copyright terms: Public domain W3C validator