ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpf2 Unicode version

Theorem cnpf2 13278
Description: A continuous function at point  P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnpf2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )

Proof of Theorem cnpf2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 999 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F  e.  ( ( J  CnP  K ) `  P ) )
2 topontop 13083 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3 cnprcl2k 13277 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
42, 3syl3an2 1272 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  P  e.  X )
5 iscnp 13270 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
64, 5syld3an3 1283 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
71, 6mpbid 147 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F : X --> Y  /\  A. a  e.  K  (
( F `  P
)  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b
)  C_  a )
) ) )
87simpld 112 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2146   A.wral 2453   E.wrex 2454    C_ wss 3127   "cima 4623   -->wf 5204   ` cfv 5208  (class class class)co 5865   Topctop 13066  TopOnctopon 13079    CnP ccnp 13257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-top 13067  df-topon 13080  df-cnp 13260
This theorem is referenced by:  iscnp4  13289  cnptopco  13293  cncnp2m  13302  cnptopresti  13309  lmtopcnp  13321  txcnp  13342  metcnpi3  13588  cnplimcim  13707  limccnpcntop  13715  limccnp2lem  13716  limccnp2cntop  13717
  Copyright terms: Public domain W3C validator