ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpf2 Unicode version

Theorem cnpf2 14375
Description: A continuous function at point  P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnpf2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )

Proof of Theorem cnpf2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1001 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F  e.  ( ( J  CnP  K ) `  P ) )
2 topontop 14182 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3 cnprcl2k 14374 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
42, 3syl3an2 1283 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  P  e.  X )
5 iscnp 14367 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
64, 5syld3an3 1294 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. a  e.  K  ( ( F `
 P )  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b )  C_  a ) ) ) ) )
71, 6mpbid 147 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  ( F : X --> Y  /\  A. a  e.  K  (
( F `  P
)  e.  a  ->  E. b  e.  J  ( P  e.  b  /\  ( F " b
)  C_  a )
) ) )
87simpld 112 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   "cima 4662   -->wf 5250   ` cfv 5254  (class class class)co 5918   Topctop 14165  TopOnctopon 14178    CnP ccnp 14354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-top 14166  df-topon 14179  df-cnp 14357
This theorem is referenced by:  iscnp4  14386  cnptopco  14390  cncnp2m  14399  cnptopresti  14406  lmtopcnp  14418  txcnp  14439  metcnpi3  14685  cnplimcim  14821  limccnpcntop  14829  limccnp2lem  14830  limccnp2cntop  14831
  Copyright terms: Public domain W3C validator