Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnpf2 | Unicode version |
Description: A continuous function at point is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
Ref | Expression |
---|---|
cnpf2 | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 999 | . . 3 TopOn TopOn | |
2 | topontop 13083 | . . . . 5 TopOn | |
3 | cnprcl2k 13277 | . . . . 5 TopOn | |
4 | 2, 3 | syl3an2 1272 | . . . 4 TopOn TopOn |
5 | iscnp 13270 | . . . 4 TopOn TopOn | |
6 | 4, 5 | syld3an3 1283 | . . 3 TopOn TopOn |
7 | 1, 6 | mpbid 147 | . 2 TopOn TopOn |
8 | 7 | simpld 112 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wcel 2146 wral 2453 wrex 2454 wss 3127 cima 4623 wf 5204 cfv 5208 (class class class)co 5865 ctop 13066 TopOnctopon 13079 ccnp 13257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-top 13067 df-topon 13080 df-cnp 13260 |
This theorem is referenced by: iscnp4 13289 cnptopco 13293 cncnp2m 13302 cnptopresti 13309 lmtopcnp 13321 txcnp 13342 metcnpi3 13588 cnplimcim 13707 limccnpcntop 13715 limccnp2lem 13716 limccnp2cntop 13717 |
Copyright terms: Public domain | W3C validator |