![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgiun | GIF version |
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgiun | ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 4722 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
2 | 1 | adantl 272 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | eqid 2095 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | rnmptss 5498 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) |
5 | eltg3i 11908 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) | |
6 | 4, 5 | sylan2 281 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) |
7 | 2, 6 | eqeltrd 2171 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∀wral 2370 ⊆ wss 3013 ∪ cuni 3675 ∪ ciun 3752 ↦ cmpt 3921 ran crn 4468 ‘cfv 5049 topGenctg 11819 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-topgen 11825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |