ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgiun GIF version

Theorem tgiun 13658
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 ∈ (topGenβ€˜π΅))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝑉
Allowed substitution hint:   𝐢(π‘₯)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 4886 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡 β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢))
21adantl 277 . 2 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢))
3 eqid 2177 . . . 4 (π‘₯ ∈ 𝐴 ↦ 𝐢) = (π‘₯ ∈ 𝐴 ↦ 𝐢)
43rnmptss 5679 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡 β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) βŠ† 𝐡)
5 eltg3i 13641 . . 3 ((𝐡 ∈ 𝑉 ∧ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) βŠ† 𝐡) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ (topGenβ€˜π΅))
64, 5sylan2 286 . 2 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ (topGenβ€˜π΅))
72, 6eqeltrd 2254 1 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 ∈ (topGenβ€˜π΅))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3131  βˆͺ cuni 3811  βˆͺ ciun 3888   ↦ cmpt 4066  ran crn 4629  β€˜cfv 5218  topGenctg 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-topgen 12714
This theorem is referenced by:  txbasval  13852
  Copyright terms: Public domain W3C validator