![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgiun | GIF version |
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgiun | β’ ((π΅ β π β§ βπ₯ β π΄ πΆ β π΅) β βͺ π₯ β π΄ πΆ β (topGenβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 4886 | . . 3 β’ (βπ₯ β π΄ πΆ β π΅ β βͺ π₯ β π΄ πΆ = βͺ ran (π₯ β π΄ β¦ πΆ)) | |
2 | 1 | adantl 277 | . 2 β’ ((π΅ β π β§ βπ₯ β π΄ πΆ β π΅) β βͺ π₯ β π΄ πΆ = βͺ ran (π₯ β π΄ β¦ πΆ)) |
3 | eqid 2177 | . . . 4 β’ (π₯ β π΄ β¦ πΆ) = (π₯ β π΄ β¦ πΆ) | |
4 | 3 | rnmptss 5679 | . . 3 β’ (βπ₯ β π΄ πΆ β π΅ β ran (π₯ β π΄ β¦ πΆ) β π΅) |
5 | eltg3i 13641 | . . 3 β’ ((π΅ β π β§ ran (π₯ β π΄ β¦ πΆ) β π΅) β βͺ ran (π₯ β π΄ β¦ πΆ) β (topGenβπ΅)) | |
6 | 4, 5 | sylan2 286 | . 2 β’ ((π΅ β π β§ βπ₯ β π΄ πΆ β π΅) β βͺ ran (π₯ β π΄ β¦ πΆ) β (topGenβπ΅)) |
7 | 2, 6 | eqeltrd 2254 | 1 β’ ((π΅ β π β§ βπ₯ β π΄ πΆ β π΅) β βͺ π₯ β π΄ πΆ β (topGenβπ΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βwral 2455 β wss 3131 βͺ cuni 3811 βͺ ciun 3888 β¦ cmpt 4066 ran crn 4629 βcfv 5218 topGenctg 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-topgen 12714 |
This theorem is referenced by: txbasval 13852 |
Copyright terms: Public domain | W3C validator |