ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgiun GIF version

Theorem tgiun 12279
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 4803 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
21adantl 275 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
3 eqid 2140 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43rnmptss 5588 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran (𝑥𝐴𝐶) ⊆ 𝐵)
5 eltg3i 12262 . . 3 ((𝐵𝑉 ∧ ran (𝑥𝐴𝐶) ⊆ 𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
64, 5sylan2 284 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
72, 6eqeltrd 2217 1 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  wss 3075   cuni 3743   ciun 3820  cmpt 3996  ran crn 4547  cfv 5130  topGenctg 12172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-topgen 12178
This theorem is referenced by:  txbasval  12473
  Copyright terms: Public domain W3C validator