Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgiun | GIF version |
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgiun | ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 4861 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
2 | 1 | adantl 275 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | eqid 2165 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | rnmptss 5646 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) |
5 | eltg3i 12696 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) | |
6 | 4, 5 | sylan2 284 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) |
7 | 2, 6 | eqeltrd 2243 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∪ cuni 3789 ∪ ciun 3866 ↦ cmpt 4043 ran crn 4605 ‘cfv 5188 topGenctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: txbasval 12907 |
Copyright terms: Public domain | W3C validator |