ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg Unicode version

Theorem tposexg 6258
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg  |-  ( F  e.  V  -> tpos  F  e. 
_V )

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6249 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 dmexg 4891 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 cnvexg 5166 . . . . 5  |-  ( dom 
F  e.  _V  ->  `' dom  F  e.  _V )
42, 3syl 14 . . . 4  |-  ( F  e.  V  ->  `' dom  F  e.  _V )
5 p0ex 4188 . . . 4  |-  { (/) }  e.  _V
6 unexg 4443 . . . 4  |-  ( ( `' dom  F  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( `' dom  F  u.  { (/) } )  e.  _V )
74, 5, 6sylancl 413 . . 3  |-  ( F  e.  V  ->  ( `' dom  F  u.  { (/)
} )  e.  _V )
8 rnexg 4892 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
9 xpexg 4740 . . 3  |-  ( ( ( `' dom  F  u.  { (/) } )  e. 
_V  /\  ran  F  e. 
_V )  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
107, 8, 9syl2anc 411 . 2  |-  ( F  e.  V  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
11 ssexg 4142 . 2  |-  ( (tpos 
F  C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  /\  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  e.  _V )  -> tpos  F  e.  _V )
121, 10, 11sylancr 414 1  |-  ( F  e.  V  -> tpos  F  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2737    u. cun 3127    C_ wss 3129   (/)c0 3422   {csn 3592    X. cxp 4624   `'ccnv 4625   dom cdm 4626   ran crn 4627  tpos ctpos 6244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-tpos 6245
This theorem is referenced by:  tposex  6278  opprvalg  13194  opprmulfvalg  13195  opprex  13198  opprsllem  13199
  Copyright terms: Public domain W3C validator