ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg Unicode version

Theorem tposexg 6402
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg  |-  ( F  e.  V  -> tpos  F  e. 
_V )

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6393 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 dmexg 4987 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 cnvexg 5265 . . . . 5  |-  ( dom 
F  e.  _V  ->  `' dom  F  e.  _V )
42, 3syl 14 . . . 4  |-  ( F  e.  V  ->  `' dom  F  e.  _V )
5 p0ex 4271 . . . 4  |-  { (/) }  e.  _V
6 unexg 4533 . . . 4  |-  ( ( `' dom  F  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( `' dom  F  u.  { (/) } )  e.  _V )
74, 5, 6sylancl 413 . . 3  |-  ( F  e.  V  ->  ( `' dom  F  u.  { (/)
} )  e.  _V )
8 rnexg 4988 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
9 xpexg 4832 . . 3  |-  ( ( ( `' dom  F  u.  { (/) } )  e. 
_V  /\  ran  F  e. 
_V )  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
107, 8, 9syl2anc 411 . 2  |-  ( F  e.  V  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
11 ssexg 4222 . 2  |-  ( (tpos 
F  C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  /\  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  e.  _V )  -> tpos  F  e.  _V )
121, 10, 11sylancr 414 1  |-  ( F  e.  V  -> tpos  F  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666    X. cxp 4716   `'ccnv 4717   dom cdm 4718   ran crn 4719  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-tpos 6389
This theorem is referenced by:  tposex  6422  opprvalg  14027  opprmulfvalg  14028  opprex  14031  opprsllem  14032
  Copyright terms: Public domain W3C validator