ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg Unicode version

Theorem tposexg 6237
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg  |-  ( F  e.  V  -> tpos  F  e. 
_V )

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6228 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 dmexg 4875 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 cnvexg 5148 . . . . 5  |-  ( dom 
F  e.  _V  ->  `' dom  F  e.  _V )
42, 3syl 14 . . . 4  |-  ( F  e.  V  ->  `' dom  F  e.  _V )
5 p0ex 4174 . . . 4  |-  { (/) }  e.  _V
6 unexg 4428 . . . 4  |-  ( ( `' dom  F  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( `' dom  F  u.  { (/) } )  e.  _V )
74, 5, 6sylancl 411 . . 3  |-  ( F  e.  V  ->  ( `' dom  F  u.  { (/)
} )  e.  _V )
8 rnexg 4876 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
9 xpexg 4725 . . 3  |-  ( ( ( `' dom  F  u.  { (/) } )  e. 
_V  /\  ran  F  e. 
_V )  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
107, 8, 9syl2anc 409 . 2  |-  ( F  e.  V  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
11 ssexg 4128 . 2  |-  ( (tpos 
F  C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  /\  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  e.  _V )  -> tpos  F  e.  _V )
121, 10, 11sylancr 412 1  |-  ( F  e.  V  -> tpos  F  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612  tpos ctpos 6223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-tpos 6224
This theorem is referenced by:  tposex  6257
  Copyright terms: Public domain W3C validator