ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg Unicode version

Theorem tposexg 6261
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg  |-  ( F  e.  V  -> tpos  F  e. 
_V )

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6252 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 dmexg 4893 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 cnvexg 5168 . . . . 5  |-  ( dom 
F  e.  _V  ->  `' dom  F  e.  _V )
42, 3syl 14 . . . 4  |-  ( F  e.  V  ->  `' dom  F  e.  _V )
5 p0ex 4190 . . . 4  |-  { (/) }  e.  _V
6 unexg 4445 . . . 4  |-  ( ( `' dom  F  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( `' dom  F  u.  { (/) } )  e.  _V )
74, 5, 6sylancl 413 . . 3  |-  ( F  e.  V  ->  ( `' dom  F  u.  { (/)
} )  e.  _V )
8 rnexg 4894 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
9 xpexg 4742 . . 3  |-  ( ( ( `' dom  F  u.  { (/) } )  e. 
_V  /\  ran  F  e. 
_V )  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
107, 8, 9syl2anc 411 . 2  |-  ( F  e.  V  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
11 ssexg 4144 . 2  |-  ( (tpos 
F  C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  /\  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  e.  _V )  -> tpos  F  e.  _V )
121, 10, 11sylancr 414 1  |-  ( F  e.  V  -> tpos  F  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2739    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594    X. cxp 4626   `'ccnv 4627   dom cdm 4628   ran crn 4629  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-tpos 6248
This theorem is referenced by:  tposex  6281  opprvalg  13246  opprmulfvalg  13247  opprex  13250  opprsllem  13251
  Copyright terms: Public domain W3C validator