ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlk2f Unicode version

Theorem wlk2f 16062
Description: If there is a walk  W there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
wlk2f  |-  ( W  e.  (Walks `  G
)  ->  E. f E. p  f (Walks `  G ) p )
Distinct variable groups:    f, G, p   
f, W, p

Proof of Theorem wlk2f
StepHypRef Expression
1 1stexg 6313 . . 3  |-  ( W  e.  (Walks `  G
)  ->  ( 1st `  W )  e.  _V )
2 2ndexg 6314 . . 3  |-  ( W  e.  (Walks `  G
)  ->  ( 2nd `  W )  e.  _V )
31, 2jca 306 . 2  |-  ( W  e.  (Walks `  G
)  ->  ( ( 1st `  W )  e. 
_V  /\  ( 2nd `  W )  e.  _V ) )
4 wlkcprim 16061 . 2  |-  ( W  e.  (Walks `  G
)  ->  ( 1st `  W ) (Walks `  G ) ( 2nd `  W ) )
5 breq12 4088 . . 3  |-  ( ( f  =  ( 1st `  W )  /\  p  =  ( 2nd `  W
) )  ->  (
f (Walks `  G
) p  <->  ( 1st `  W ) (Walks `  G ) ( 2nd `  W ) ) )
65spc2egv 2893 . 2  |-  ( ( ( 1st `  W
)  e.  _V  /\  ( 2nd `  W )  e.  _V )  -> 
( ( 1st `  W
) (Walks `  G
) ( 2nd `  W
)  ->  E. f E. p  f (Walks `  G ) p ) )
73, 4, 6sylc 62 1  |-  ( W  e.  (Walks `  G
)  ->  E. f E. p  f (Walks `  G ) p )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   ` cfv 5318   1stc1st 6284   2ndc2nd 6285  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287  df-wlks 16031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator