ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1en GIF version

Theorem xp1en 6970
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 6565 . . 3 1o = {∅}
21xpeq2i 4737 . 2 (𝐴 × 1o) = (𝐴 × {∅})
3 0ex 4210 . . 3 ∅ ∈ V
4 xpsneng 6969 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
53, 4mpan2 425 . 2 (𝐴𝑉 → (𝐴 × {∅}) ≈ 𝐴)
62, 5eqbrtrid 4117 1 (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  c0 3491  {csn 3666   class class class wbr 4082   × cxp 4714  1oc1o 6545  cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-suc 4459  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-1o 6552  df-en 6878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator