![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrletrd | Unicode version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
xrlttrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
xrlttrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
xrletrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
xrletrd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
xrletrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | xrletrd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | xrlttrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | xrlttrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | xrlttrd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | xrletr 9334 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3, 4, 5, 6 | syl3anc 1175 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2and 425 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-po 4132 df-iso 4133 df-xp 4458 df-cnv 4460 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |