ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletrd Unicode version

Theorem xrletrd 9815
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrletrd.4  |-  ( ph  ->  A  <_  B )
xrletrd.5  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
xrletrd  |-  ( ph  ->  A  <_  C )

Proof of Theorem xrletrd
StepHypRef Expression
1 xrletrd.4 . 2  |-  ( ph  ->  A  <_  B )
2 xrletrd.5 . 2  |-  ( ph  ->  B  <_  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrletr 9811 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
73, 4, 5, 6syl3anc 1238 . 2  |-  ( ph  ->  ( ( A  <_  B  /\  B  <_  C
)  ->  A  <_  C ) )
81, 2, 7mp2and 433 1  |-  ( ph  ->  A  <_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4005   RR*cxr 7994    <_ cle 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-po 4298  df-iso 4299  df-xp 4634  df-cnv 4636  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001
This theorem is referenced by:  xaddge0  9881  xblss2ps  14044  xblss2  14045  comet  14139  xmetxp  14147
  Copyright terms: Public domain W3C validator