![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zlelttric | GIF version |
Description: Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.) |
Ref | Expression |
---|---|
zlelttric | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 8808 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | zre 8808 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | 1, 2 | anim12i 332 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
4 | ztri3or 8847 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
5 | ltle 7626 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
6 | orc 669 | . . . 4 ⊢ (𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | |
7 | 5, 6 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴))) |
8 | eqle 7630 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
9 | 8 | ex 114 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
10 | 9 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
11 | 10, 6 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴))) |
12 | olc 668 | . . . 4 ⊢ (𝐵 < 𝐴 → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | |
13 | 12 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴))) |
14 | 7, 11, 13 | 3jaod 1241 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴))) |
15 | 3, 4, 14 | sylc 62 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 665 ∨ w3o 924 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 ℝcr 7403 < clt 7576 ≤ cle 7577 ℤcz 8804 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-addcom 7499 ax-addass 7501 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-0id 7507 ax-rnegex 7508 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-ltadd 7515 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-inn 8477 df-n0 8728 df-z 8805 |
This theorem is referenced by: btwnapz 8930 eluzdc 9151 fzsplit2 9518 uzsplit 9560 fzospliti 9641 fzouzsplit 9644 faclbnd 10203 resqrexlemoverl 10508 fisumrev2 10894 dvdslelemd 11176 dvdsle 11177 sqrt2irrap 11490 uzdcinzz 11964 |
Copyright terms: Public domain | W3C validator |