ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zlelttric GIF version

Theorem zlelttric 9390
Description: Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
Assertion
Ref Expression
zlelttric ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem zlelttric
StepHypRef Expression
1 zre 9349 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 zre 9349 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
31, 2anim12i 338 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
4 ztri3or 9388 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
5 ltle 8133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
6 orc 713 . . . 4 (𝐴𝐵 → (𝐴𝐵𝐵 < 𝐴))
75, 6syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴𝐵𝐵 < 𝐴)))
8 eqle 8137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
98ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵𝐴𝐵))
109adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐴𝐵))
1110, 6syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (𝐴𝐵𝐵 < 𝐴)))
12 olc 712 . . . 4 (𝐵 < 𝐴 → (𝐴𝐵𝐵 < 𝐴))
1312a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐴𝐵𝐵 < 𝐴)))
147, 11, 133jaod 1315 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → (𝐴𝐵𝐵 < 𝐴)))
153, 4, 14sylc 62 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3o 979   = wceq 1364  wcel 2167   class class class wbr 4034  cr 7897   < clt 8080  cle 8081  cz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346
This theorem is referenced by:  btwnapz  9475  eluzdc  9703  fzsplit2  10144  uzsplit  10186  fzospliti  10271  fzouzsplit  10274  faclbnd  10852  resqrexlemoverl  11205  fisumrev2  11630  dvdslelemd  12027  dvdsle  12028  isprm5lem  12336  sqrt2irrap  12375  prm23ge5  12460  dvdsprmpweqle  12533  uzdcinzz  15552
  Copyright terms: Public domain W3C validator