| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcl | GIF version | ||
| Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9347 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 4 | zcn 9350 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 5 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 6 | 5 | addridd 8194 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀) |
| 7 | simpl 109 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | 6, 7 | eqeltrd 2273 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) ∈ ℤ) |
| 9 | oveq2 5933 | . . . . 5 ⊢ (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0)) | |
| 10 | 9 | eleq1d 2265 | . . . 4 ⊢ (𝑁 = 0 → ((𝑀 + 𝑁) ∈ ℤ ↔ (𝑀 + 0) ∈ ℤ)) |
| 11 | 8, 10 | syl5ibrcom 157 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 + 𝑁) ∈ ℤ)) |
| 12 | zaddcllempos 9382 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | |
| 13 | 12 | ex 115 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 15 | zre 9349 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 16 | zaddcllemneg 9384 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | |
| 17 | 16 | 3expia 1207 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 18 | 15, 17 | sylan2 286 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 19 | 11, 14, 18 | 3jaod 1315 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)) |
| 20 | 3, 19 | mpd 13 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 ℝcr 7897 0cc0 7898 + caddc 7901 -cneg 8217 ℕcn 9009 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 |
| This theorem is referenced by: zsubcl 9386 zrevaddcl 9395 zdivadd 9434 zaddcld 9471 eluzaddi 9647 eluzsubi 9648 eluzadd 9649 nn0pzuz 9680 fzen 10137 fzaddel 10153 fzrev3 10181 fzrevral3 10201 elfzmlbp 10226 fzoaddel 10287 zpnn0elfzo 10302 elfzomelpfzo 10326 fzoshftral 10333 climshftlemg 11486 fsumzcl 11586 summodnegmod 12006 dvds2ln 12008 dvds2add 12009 dvdsadd 12020 dvdsadd2b 12024 addmodlteqALT 12043 3dvdsdec 12049 3dvds2dec 12050 opoe 12079 opeo 12081 ndvdsadd 12115 pythagtriplem9 12469 difsqpwdvds 12534 gzaddcl 12573 zsubrg 14215 zringmulg 14232 expghmap 14241 mulgghm2 14242 |
| Copyright terms: Public domain | W3C validator |