| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcl | GIF version | ||
| Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9373 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 4 | zcn 9376 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 5 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 6 | 5 | addridd 8220 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀) |
| 7 | simpl 109 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | 6, 7 | eqeltrd 2281 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) ∈ ℤ) |
| 9 | oveq2 5951 | . . . . 5 ⊢ (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0)) | |
| 10 | 9 | eleq1d 2273 | . . . 4 ⊢ (𝑁 = 0 → ((𝑀 + 𝑁) ∈ ℤ ↔ (𝑀 + 0) ∈ ℤ)) |
| 11 | 8, 10 | syl5ibrcom 157 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 + 𝑁) ∈ ℤ)) |
| 12 | zaddcllempos 9408 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | |
| 13 | 12 | ex 115 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 15 | zre 9375 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 16 | zaddcllemneg 9410 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | |
| 17 | 16 | 3expia 1207 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 18 | 15, 17 | sylan2 286 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ)) |
| 19 | 11, 14, 18 | 3jaod 1316 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)) |
| 20 | 3, 19 | mpd 13 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 + caddc 7927 -cneg 8243 ℕcn 9035 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 |
| This theorem is referenced by: zsubcl 9412 zrevaddcl 9422 zdivadd 9461 zaddcld 9498 eluzaddi 9674 eluzsubi 9675 eluzadd 9676 nn0pzuz 9707 fzen 10164 fzaddel 10180 fzrev3 10208 fzrevral3 10228 elfzmlbp 10253 fzoaddel 10314 zpnn0elfzo 10334 elfzomelpfzo 10358 fzoshftral 10365 ccatsymb 11056 ccatval21sw 11059 climshftlemg 11555 fsumzcl 11655 summodnegmod 12075 dvds2ln 12077 dvds2add 12078 dvdsadd 12089 dvdsadd2b 12093 addmodlteqALT 12112 3dvdsdec 12118 3dvds2dec 12119 opoe 12148 opeo 12150 ndvdsadd 12184 pythagtriplem9 12538 difsqpwdvds 12603 gzaddcl 12642 zsubrg 14285 zringmulg 14302 expghmap 14311 mulgghm2 14312 |
| Copyright terms: Public domain | W3C validator |