ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl GIF version

Theorem zaddcl 9295
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 9257 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
21simprbi 275 . . 3 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
32adantl 277 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
4 zcn 9260 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
54adantr 276 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
65addid1d 8108 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
7 simpl 109 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
86, 7eqeltrd 2254 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) ∈ ℤ)
9 oveq2 5885 . . . . 5 (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0))
109eleq1d 2246 . . . 4 (𝑁 = 0 → ((𝑀 + 𝑁) ∈ ℤ ↔ (𝑀 + 0) ∈ ℤ))
118, 10syl5ibrcom 157 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 + 𝑁) ∈ ℤ))
12 zaddcllempos 9292 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
1312ex 115 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1413adantr 276 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
15 zre 9259 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
16 zaddcllemneg 9294 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
17163expia 1205 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1815, 17sylan2 286 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1911, 14, 183jaod 1304 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ))
203, 19mpd 13 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 977   = wceq 1353  wcel 2148  (class class class)co 5877  cc 7811  cr 7812  0cc0 7813   + caddc 7816  -cneg 8131  cn 8921  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  zsubcl  9296  zrevaddcl  9305  zdivadd  9344  zaddcld  9381  eluzaddi  9556  eluzsubi  9557  eluzadd  9558  nn0pzuz  9589  fzen  10045  fzaddel  10061  fzrev3  10089  fzrevral3  10109  elfzmlbp  10134  fzoaddel  10194  zpnn0elfzo  10209  elfzomelpfzo  10233  fzoshftral  10240  climshftlemg  11312  fsumzcl  11412  summodnegmod  11831  dvds2ln  11833  dvds2add  11834  dvdsadd  11845  dvdsadd2b  11849  addmodlteqALT  11867  3dvdsdec  11872  3dvds2dec  11873  opoe  11902  opeo  11904  ndvdsadd  11938  pythagtriplem9  12275  difsqpwdvds  12339  gzaddcl  12377  zsubrg  13514  zringmulg  13527
  Copyright terms: Public domain W3C validator