ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdceq GIF version

Theorem qdceq 10385
Description: Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
qdceq ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)

Proof of Theorem qdceq
StepHypRef Expression
1 qtri3or 10381 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 qre 9745 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
3 ltne 8156 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
43necomd 2461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 olc 712 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵𝐴𝐵))
6 dcne 2386 . . . . . . . 8 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
75, 6sylibr 134 . . . . . . 7 (𝐴𝐵DECID 𝐴 = 𝐵)
84, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵)
98ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
109adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
112, 10sylan 283 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
12 orc 713 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴𝐵))
1312, 6sylibr 134 . . . 4 (𝐴 = 𝐵DECID 𝐴 = 𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵DECID 𝐴 = 𝐵))
15 qre 9745 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
16 ltne 8156 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴𝐵)
1716, 7syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)
1817ex 115 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
1915, 18syl 14 . . . 4 (𝐵 ∈ ℚ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2019adantl 277 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2111, 14, 203jaod 1316 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 = 𝐵))
221, 21mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  cr 7923   < clt 8106  cq 9739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775
This theorem is referenced by:  flqeqceilz  10461  bitsinv1lem  12243  pcxcl  12605  pcxqcl  12606  pcaddlem  12633  pcadd  12634  qexpz  12646  qnnen  12773  apdifflemr  15948
  Copyright terms: Public domain W3C validator