ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdceq GIF version

Theorem qdceq 10178
Description: Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
qdceq ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)

Proof of Theorem qdceq
StepHypRef Expression
1 qtri3or 10174 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 qre 9559 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
3 ltne 7979 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
43necomd 2421 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 olc 701 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵𝐴𝐵))
6 dcne 2346 . . . . . . . 8 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
75, 6sylibr 133 . . . . . . 7 (𝐴𝐵DECID 𝐴 = 𝐵)
84, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵)
98ex 114 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
109adantr 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
112, 10sylan 281 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
12 orc 702 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴𝐵))
1312, 6sylibr 133 . . . 4 (𝐴 = 𝐵DECID 𝐴 = 𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵DECID 𝐴 = 𝐵))
15 qre 9559 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
16 ltne 7979 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴𝐵)
1716, 7syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)
1817ex 114 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
1915, 18syl 14 . . . 4 (𝐵 ∈ ℚ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2019adantl 275 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2111, 14, 203jaod 1294 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 = 𝐵))
221, 21mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136  wne 2335   class class class wbr 3981  cr 7748   < clt 7929  cq 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-q 9554  df-rp 9586
This theorem is referenced by:  flqeqceilz  10249  pcxcl  12239  pcaddlem  12266  pcadd  12267  qexpz  12278  qnnen  12360  apdifflemr  13886
  Copyright terms: Public domain W3C validator