| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | GIF version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9386 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9347 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | ltne 8128 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
| 4 | 3 | necomd 2453 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≠ 𝐵) |
| 5 | olc 712 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 6 | dcne 2378 | . . . . . . . 8 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . 7 ⊢ (𝐴 ≠ 𝐵 → DECID 𝐴 = 𝐵) |
| 8 | 4, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵) |
| 9 | 8 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 11 | 2, 10 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 12 | orc 713 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 13 | 12, 6 | sylibr 134 | . . . 4 ⊢ (𝐴 = 𝐵 → DECID 𝐴 = 𝐵) |
| 14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → DECID 𝐴 = 𝐵)) |
| 15 | zre 9347 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 16 | ltne 8128 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 ≠ 𝐵) | |
| 17 | 16, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵) |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 19 | 15, 18 | syl 14 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 21 | 11, 14, 20 | 3jaod 1315 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)) |
| 22 | 1, 21 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ℝcr 7895 < clt 8078 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: nn0n0n1ge2b 9422 nn0lt2 9424 prime 9442 elnn1uz2 9698 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 seq3f1olemstep 10623 exp3val 10650 hashfzp1 10933 fprod1p 11781 dvdsdc 11980 zdvdsdc 11994 fsumdvds 12024 dvdsabseq 12029 alzdvds 12036 fzo0dvdseq 12039 gcdmndc 12147 gcdsupex 12149 gcdsupcl 12150 gcd0id 12171 gcdaddm 12176 dfgcd2 12206 gcdmultiplez 12213 dvdssq 12223 nn0seqcvgd 12234 algcvgblem 12242 eucalgval2 12246 lcmmndc 12255 lcmdvds 12272 lcmid 12273 mulgcddvds 12287 cncongr2 12297 isprm3 12311 isprm4 12312 prm2orodd 12319 rpexp 12346 phivalfi 12405 phiprmpw 12415 phimullem 12418 eulerthlemfi 12421 hashgcdeq 12433 phisum 12434 pcxnn0cl 12504 pcge0 12507 pcdvdsb 12514 pcneg 12519 pcdvdstr 12521 pcgcd1 12522 pc2dvds 12524 pcz 12526 pcprmpw2 12527 pcmpt 12537 4sqlemafi 12589 4sqleminfi 12591 4sqexercise1 12592 4sqexercise2 12593 4sqlemsdc 12594 4sqlem11 12595 4sqlem19 12603 ennnfonelemim 12666 unbendc 12696 strsetsid 12736 mulgval 13328 mulgfng 13330 subgmulg 13394 znf1o 14283 psr1clfi 14316 ply1term 15063 dvply1 15085 perfectlem2 15320 lgsval 15329 lgsfvalg 15330 lgsfcl2 15331 lgscllem 15332 lgsval2lem 15335 lgsneg1 15350 lgsdir2 15358 lgsdirprm 15359 lgsdir 15360 lgsne0 15363 lgsprme0 15367 lgsdirnn0 15372 lgsdinn0 15373 lgsquadlem1 15402 lgsquadlem2 15403 lgsquad3 15409 2lgs 15429 2lgsoddprm 15438 2sqlem9 15449 nninffeq 15751 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |