![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zdceq | GIF version |
Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zdceq | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ztri3or 9363 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
2 | zre 9324 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | ltne 8106 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 3 | necomd 2450 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≠ 𝐵) |
5 | olc 712 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
6 | dcne 2375 | . . . . . . . 8 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
7 | 5, 6 | sylibr 134 | . . . . . . 7 ⊢ (𝐴 ≠ 𝐵 → DECID 𝐴 = 𝐵) |
8 | 4, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵) |
9 | 8 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
10 | 9 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
11 | 2, 10 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
12 | orc 713 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
13 | 12, 6 | sylibr 134 | . . . 4 ⊢ (𝐴 = 𝐵 → DECID 𝐴 = 𝐵) |
14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → DECID 𝐴 = 𝐵)) |
15 | zre 9324 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
16 | ltne 8106 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 ≠ 𝐵) | |
17 | 16, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵) |
18 | 17 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
19 | 15, 18 | syl 14 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
20 | 19 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
21 | 11, 14, 20 | 3jaod 1315 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)) |
22 | 1, 21 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4030 ℝcr 7873 < clt 8056 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: nn0n0n1ge2b 9399 nn0lt2 9401 prime 9419 elnn1uz2 9675 iseqf1olemqcl 10573 iseqf1olemnab 10575 iseqf1olemab 10576 seq3f1olemstep 10588 exp3val 10615 hashfzp1 10898 fprod1p 11745 dvdsdc 11944 zdvdsdc 11958 dvdsabseq 11992 alzdvds 11999 fzo0dvdseq 12002 gcdmndc 12084 gcdsupex 12097 gcdsupcl 12098 gcd0id 12119 gcdaddm 12124 dfgcd2 12154 gcdmultiplez 12161 dvdssq 12171 nn0seqcvgd 12182 algcvgblem 12190 eucalgval2 12194 lcmmndc 12203 lcmdvds 12220 lcmid 12221 mulgcddvds 12235 cncongr2 12245 isprm3 12259 isprm4 12260 prm2orodd 12267 rpexp 12294 phivalfi 12353 phiprmpw 12363 phimullem 12366 eulerthlemfi 12369 hashgcdeq 12380 phisum 12381 pcxnn0cl 12451 pcge0 12454 pcdvdsb 12461 pcneg 12466 pcdvdstr 12468 pcgcd1 12469 pc2dvds 12471 pcz 12473 pcprmpw2 12474 pcmpt 12484 4sqlemafi 12536 4sqleminfi 12538 4sqexercise1 12539 4sqexercise2 12540 4sqlemsdc 12541 4sqlem11 12542 4sqlem19 12550 ennnfonelemim 12584 unbendc 12614 strsetsid 12654 mulgval 13195 mulgfng 13197 subgmulg 13261 znf1o 14150 ply1term 14922 dvply1 14943 lgsval 15161 lgsfvalg 15162 lgsfcl2 15163 lgscllem 15164 lgsval2lem 15167 lgsneg1 15182 lgsdir2 15190 lgsdirprm 15191 lgsdir 15192 lgsne0 15195 lgsprme0 15199 lgsdirnn0 15204 lgsdinn0 15205 lgsquadlem1 15234 lgsquadlem2 15235 lgsquad3 15241 2lgs 15261 2lgsoddprm 15270 2sqlem9 15281 nninffeq 15580 nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |