ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdceq GIF version

Theorem zdceq 9401
Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zdceq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)

Proof of Theorem zdceq
StepHypRef Expression
1 ztri3or 9369 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 9330 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 ltne 8111 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
43necomd 2453 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 olc 712 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵𝐴𝐵))
6 dcne 2378 . . . . . . . 8 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
75, 6sylibr 134 . . . . . . 7 (𝐴𝐵DECID 𝐴 = 𝐵)
84, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵)
98ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
109adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
112, 10sylan 283 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
12 orc 713 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴𝐵))
1312, 6sylibr 134 . . . 4 (𝐴 = 𝐵DECID 𝐴 = 𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵DECID 𝐴 = 𝐵))
15 zre 9330 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
16 ltne 8111 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴𝐵)
1716, 7syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)
1817ex 115 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
1915, 18syl 14 . . . 4 (𝐵 ∈ ℤ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2019adantl 277 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2111, 14, 203jaod 1315 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 = 𝐵))
221, 21mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cr 7878   < clt 8061  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  nn0n0n1ge2b  9405  nn0lt2  9407  prime  9425  elnn1uz2  9681  iseqf1olemqcl  10591  iseqf1olemnab  10593  iseqf1olemab  10594  seq3f1olemstep  10606  exp3val  10633  hashfzp1  10916  fprod1p  11764  dvdsdc  11963  zdvdsdc  11977  fsumdvds  12007  dvdsabseq  12012  alzdvds  12019  fzo0dvdseq  12022  gcdmndc  12122  gcdsupex  12124  gcdsupcl  12125  gcd0id  12146  gcdaddm  12151  dfgcd2  12181  gcdmultiplez  12188  dvdssq  12198  nn0seqcvgd  12209  algcvgblem  12217  eucalgval2  12221  lcmmndc  12230  lcmdvds  12247  lcmid  12248  mulgcddvds  12262  cncongr2  12272  isprm3  12286  isprm4  12287  prm2orodd  12294  rpexp  12321  phivalfi  12380  phiprmpw  12390  phimullem  12393  eulerthlemfi  12396  hashgcdeq  12408  phisum  12409  pcxnn0cl  12479  pcge0  12482  pcdvdsb  12489  pcneg  12494  pcdvdstr  12496  pcgcd1  12497  pc2dvds  12499  pcz  12501  pcprmpw2  12502  pcmpt  12512  4sqlemafi  12564  4sqleminfi  12566  4sqexercise1  12567  4sqexercise2  12568  4sqlemsdc  12569  4sqlem11  12570  4sqlem19  12578  ennnfonelemim  12641  unbendc  12671  strsetsid  12711  mulgval  13252  mulgfng  13254  subgmulg  13318  znf1o  14207  ply1term  14979  dvply1  15001  perfectlem2  15236  lgsval  15245  lgsfvalg  15246  lgsfcl2  15247  lgscllem  15248  lgsval2lem  15251  lgsneg1  15266  lgsdir2  15274  lgsdirprm  15275  lgsdir  15276  lgsne0  15279  lgsprme0  15283  lgsdirnn0  15288  lgsdinn0  15289  lgsquadlem1  15318  lgsquadlem2  15319  lgsquad3  15325  2lgs  15345  2lgsoddprm  15354  2sqlem9  15365  nninffeq  15664  nconstwlpolem  15709
  Copyright terms: Public domain W3C validator