| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | GIF version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9369 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9330 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | ltne 8111 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
| 4 | 3 | necomd 2453 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≠ 𝐵) |
| 5 | olc 712 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 6 | dcne 2378 | . . . . . . . 8 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . 7 ⊢ (𝐴 ≠ 𝐵 → DECID 𝐴 = 𝐵) |
| 8 | 4, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵) |
| 9 | 8 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 11 | 2, 10 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 12 | orc 713 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 13 | 12, 6 | sylibr 134 | . . . 4 ⊢ (𝐴 = 𝐵 → DECID 𝐴 = 𝐵) |
| 14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → DECID 𝐴 = 𝐵)) |
| 15 | zre 9330 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 16 | ltne 8111 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 ≠ 𝐵) | |
| 17 | 16, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵) |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 19 | 15, 18 | syl 14 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 21 | 11, 14, 20 | 3jaod 1315 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)) |
| 22 | 1, 21 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4033 ℝcr 7878 < clt 8061 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: nn0n0n1ge2b 9405 nn0lt2 9407 prime 9425 elnn1uz2 9681 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 seq3f1olemstep 10606 exp3val 10633 hashfzp1 10916 fprod1p 11764 dvdsdc 11963 zdvdsdc 11977 fsumdvds 12007 dvdsabseq 12012 alzdvds 12019 fzo0dvdseq 12022 gcdmndc 12122 gcdsupex 12124 gcdsupcl 12125 gcd0id 12146 gcdaddm 12151 dfgcd2 12181 gcdmultiplez 12188 dvdssq 12198 nn0seqcvgd 12209 algcvgblem 12217 eucalgval2 12221 lcmmndc 12230 lcmdvds 12247 lcmid 12248 mulgcddvds 12262 cncongr2 12272 isprm3 12286 isprm4 12287 prm2orodd 12294 rpexp 12321 phivalfi 12380 phiprmpw 12390 phimullem 12393 eulerthlemfi 12396 hashgcdeq 12408 phisum 12409 pcxnn0cl 12479 pcge0 12482 pcdvdsb 12489 pcneg 12494 pcdvdstr 12496 pcgcd1 12497 pc2dvds 12499 pcz 12501 pcprmpw2 12502 pcmpt 12512 4sqlemafi 12564 4sqleminfi 12566 4sqexercise1 12567 4sqexercise2 12568 4sqlemsdc 12569 4sqlem11 12570 4sqlem19 12578 ennnfonelemim 12641 unbendc 12671 strsetsid 12711 mulgval 13252 mulgfng 13254 subgmulg 13318 znf1o 14207 ply1term 14979 dvply1 15001 perfectlem2 15236 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgscllem 15248 lgsval2lem 15251 lgsneg1 15266 lgsdir2 15274 lgsdirprm 15275 lgsdir 15276 lgsne0 15279 lgsprme0 15283 lgsdirnn0 15288 lgsdinn0 15289 lgsquadlem1 15318 lgsquadlem2 15319 lgsquad3 15325 2lgs 15345 2lgsoddprm 15354 2sqlem9 15365 nninffeq 15664 nconstwlpolem 15709 |
| Copyright terms: Public domain | W3C validator |