| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | GIF version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9415 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9376 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | ltne 8157 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
| 4 | 3 | necomd 2462 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≠ 𝐵) |
| 5 | olc 713 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 6 | dcne 2387 | . . . . . . . 8 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . 7 ⊢ (𝐴 ≠ 𝐵 → DECID 𝐴 = 𝐵) |
| 8 | 4, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵) |
| 9 | 8 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 11 | 2, 10 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → DECID 𝐴 = 𝐵)) |
| 12 | orc 714 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) | |
| 13 | 12, 6 | sylibr 134 | . . . 4 ⊢ (𝐴 = 𝐵 → DECID 𝐴 = 𝐵) |
| 14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → DECID 𝐴 = 𝐵)) |
| 15 | zre 9376 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 16 | ltne 8157 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴 ≠ 𝐵) | |
| 17 | 16, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵) |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 19 | 15, 18 | syl 14 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → DECID 𝐴 = 𝐵)) |
| 21 | 11, 14, 20 | 3jaod 1317 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)) |
| 22 | 1, 21 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∨ w3o 980 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 class class class wbr 4044 ℝcr 7924 < clt 8107 ℤcz 9372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: nn0n0n1ge2b 9452 nn0lt2 9454 prime 9472 elnn1uz2 9728 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemab 10647 seq3f1olemstep 10659 exp3val 10686 hashfzp1 10969 ccat1st1st 11093 fprod1p 11910 dvdsdc 12109 zdvdsdc 12123 fsumdvds 12153 dvdsabseq 12158 alzdvds 12165 fzo0dvdseq 12168 gcdmndc 12276 gcdsupex 12278 gcdsupcl 12279 gcd0id 12300 gcdaddm 12305 dfgcd2 12335 gcdmultiplez 12342 dvdssq 12352 nn0seqcvgd 12363 algcvgblem 12371 eucalgval2 12375 lcmmndc 12384 lcmdvds 12401 lcmid 12402 mulgcddvds 12416 cncongr2 12426 isprm3 12440 isprm4 12441 prm2orodd 12448 rpexp 12475 phivalfi 12534 phiprmpw 12544 phimullem 12547 eulerthlemfi 12550 hashgcdeq 12562 phisum 12563 pcxnn0cl 12633 pcge0 12636 pcdvdsb 12643 pcneg 12648 pcdvdstr 12650 pcgcd1 12651 pc2dvds 12653 pcz 12655 pcprmpw2 12656 pcmpt 12666 4sqlemafi 12718 4sqleminfi 12720 4sqexercise1 12721 4sqexercise2 12722 4sqlemsdc 12723 4sqlem11 12724 4sqlem19 12732 ennnfonelemim 12795 unbendc 12825 strsetsid 12865 mulgval 13458 mulgfng 13460 subgmulg 13524 znf1o 14413 psr1clfi 14450 ply1term 15215 dvply1 15237 perfectlem2 15472 lgsval 15481 lgsfvalg 15482 lgsfcl2 15483 lgscllem 15484 lgsval2lem 15487 lgsneg1 15502 lgsdir2 15510 lgsdirprm 15511 lgsdir 15512 lgsne0 15515 lgsprme0 15519 lgsdirnn0 15524 lgsdinn0 15525 lgsquadlem1 15554 lgsquadlem2 15555 lgsquad3 15561 2lgs 15581 2lgsoddprm 15590 2sqlem9 15601 nninffeq 15957 nconstwlpolem 16004 |
| Copyright terms: Public domain | W3C validator |