| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdcle | GIF version | ||
| Description: Integer ≤ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| zdcle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9485 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9446 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | zre 9446 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 4 | ltle 8230 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | orc 717 | . . . . . 6 ⊢ (𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 6 | df-dc 840 | . . . . . 6 ⊢ (DECID 𝐴 ≤ 𝐵 ↔ (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → DECID 𝐴 ≤ 𝐵) |
| 8 | 4, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 9 | eqle 8234 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 10 | 9, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 ≤ 𝐵) |
| 11 | 10 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 13 | lenlt 8218 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 14 | 13 | biimpd 144 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → ¬ 𝐵 < 𝐴)) |
| 15 | 14 | con2d 627 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 ≤ 𝐵)) |
| 16 | olc 716 | . . . . . 6 ⊢ (¬ 𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 17 | 16, 6 | sylibr 134 | . . . . 5 ⊢ (¬ 𝐴 ≤ 𝐵 → DECID 𝐴 ≤ 𝐵) |
| 18 | 15, 17 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 ≤ 𝐵)) |
| 19 | 8, 12, 18 | 3jaod 1338 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 ≤ 𝐵)) |
| 20 | 2, 3, 19 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 ≤ 𝐵)) |
| 21 | 1, 20 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: uzin 9751 xnn0dcle 9994 nelfzo 10344 exfzdc 10441 infssuzex 10448 modfzo0difsn 10612 fzfig 10647 iseqf1olemjpcl 10725 iseqf1olemqpcl 10726 seq3f1oleml 10733 seq3f1o 10734 fser0const 10752 ccatsymb 11132 fzowrddc 11174 swrdnd 11186 swrdsbslen 11193 swrdspsleq 11194 pfxccat3 11261 swrdccat 11262 pfxccat3a 11265 swrdccat3blem 11266 swrdccat3b 11267 uzin2 11493 2zsupmax 11732 2zinfmin 11749 sumeq2 11865 summodclem2a 11887 fsum3 11893 fsumcl2lem 11904 fsumadd 11912 sumsnf 11915 fsummulc2 11954 explecnv 12011 prodeq2 12063 prodmodclem3 12081 prodmodclem2a 12082 fprodseq 12089 prod1dc 12092 fprodmul 12097 prodsnf 12098 pcdvdsb 12838 pcmpt2 12862 pcmptdvds 12863 pcprod 12864 pcfac 12868 1arithlem4 12884 plyaddlem1 15415 plyaddlem 15417 |
| Copyright terms: Public domain | W3C validator |