ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle GIF version

Theorem zdcle 9263
Description: Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 9230 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 9191 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 zre 9191 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
4 ltle 7982 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
5 orc 702 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
6 df-dc 825 . . . . . 6 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
75, 6sylibr 133 . . . . 5 (𝐴𝐵DECID 𝐴𝐵)
84, 7syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴𝐵))
9 eqle 7986 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
109, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴𝐵)
1110ex 114 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵DECID 𝐴𝐵))
1211adantr 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴𝐵))
13 lenlt 7970 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1413biimpd 143 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → ¬ 𝐵 < 𝐴))
1514con2d 614 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴𝐵))
16 olc 701 . . . . . 6 𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1716, 6sylibr 133 . . . . 5 𝐴𝐵DECID 𝐴𝐵)
1815, 17syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴𝐵))
198, 12, 183jaod 1294 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴𝐵))
202, 3, 19syl2an 287 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴𝐵))
211, 20mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136   class class class wbr 3981  cr 7748   < clt 7929  cle 7930  cz 9187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188
This theorem is referenced by:  uzin  9494  xnn0dcle  9734  exfzdc  10171  modfzo0difsn  10326  fzfig  10361  iseqf1olemjpcl  10426  iseqf1olemqpcl  10427  seq3f1oleml  10434  seq3f1o  10435  fser0const  10447  uzin2  10925  2zsupmax  11163  2zinfmin  11180  sumeq2  11296  summodclem2a  11318  fsum3  11324  fsumcl2lem  11335  fsumadd  11343  sumsnf  11346  fsummulc2  11385  explecnv  11442  prodeq2  11494  prodmodclem3  11512  prodmodclem2a  11513  fprodseq  11520  prod1dc  11523  fprodmul  11528  prodsnf  11529  infssuzex  11878  pcdvdsb  12247  pcmpt2  12270  pcmptdvds  12271  pcprod  12272  pcfac  12276  1arithlem4  12292
  Copyright terms: Public domain W3C validator