| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdcle | GIF version | ||
| Description: Integer ≤ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| zdcle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9397 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9358 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | zre 9358 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 4 | ltle 8142 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | orc 713 | . . . . . 6 ⊢ (𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 6 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝐴 ≤ 𝐵 ↔ (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → DECID 𝐴 ≤ 𝐵) |
| 8 | 4, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 9 | eqle 8146 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 10 | 9, 7 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 ≤ 𝐵) |
| 11 | 10 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 ≤ 𝐵)) |
| 13 | lenlt 8130 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 14 | 13 | biimpd 144 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → ¬ 𝐵 < 𝐴)) |
| 15 | 14 | con2d 625 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 ≤ 𝐵)) |
| 16 | olc 712 | . . . . . 6 ⊢ (¬ 𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
| 17 | 16, 6 | sylibr 134 | . . . . 5 ⊢ (¬ 𝐴 ≤ 𝐵 → DECID 𝐴 ≤ 𝐵) |
| 18 | 15, 17 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 ≤ 𝐵)) |
| 19 | 8, 12, 18 | 3jaod 1316 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 ≤ 𝐵)) |
| 20 | 2, 3, 19 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 ≤ 𝐵)) |
| 21 | 1, 20 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ℝcr 7906 < clt 8089 ≤ cle 8090 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 |
| This theorem is referenced by: uzin 9663 xnn0dcle 9906 nelfzo 10256 exfzdc 10350 infssuzex 10357 modfzo0difsn 10521 fzfig 10556 iseqf1olemjpcl 10634 iseqf1olemqpcl 10635 seq3f1oleml 10642 seq3f1o 10643 fser0const 10661 ccatsymb 11033 uzin2 11217 2zsupmax 11456 2zinfmin 11473 sumeq2 11589 summodclem2a 11611 fsum3 11617 fsumcl2lem 11628 fsumadd 11636 sumsnf 11639 fsummulc2 11678 explecnv 11735 prodeq2 11787 prodmodclem3 11805 prodmodclem2a 11806 fprodseq 11813 prod1dc 11816 fprodmul 11821 prodsnf 11822 pcdvdsb 12562 pcmpt2 12586 pcmptdvds 12587 pcprod 12588 pcfac 12592 1arithlem4 12608 plyaddlem1 15137 plyaddlem 15139 |
| Copyright terms: Public domain | W3C validator |