ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle GIF version

Theorem zdcle 8718
Description: Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 8688 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 8649 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 zre 8649 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
4 ltle 7474 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
5 orc 666 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
6 df-dc 777 . . . . . 6 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
75, 6sylibr 132 . . . . 5 (𝐴𝐵DECID 𝐴𝐵)
84, 7syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴𝐵))
9 eqle 7478 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
109, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴𝐵)
1110ex 113 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵DECID 𝐴𝐵))
1211adantr 270 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴𝐵))
13 lenlt 7463 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1413biimpd 142 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → ¬ 𝐵 < 𝐴))
1514con2d 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴𝐵))
16 olc 665 . . . . . 6 𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
1716, 6sylibr 132 . . . . 5 𝐴𝐵DECID 𝐴𝐵)
1815, 17syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴𝐵))
198, 12, 183jaod 1236 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴𝐵))
202, 3, 19syl2an 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴𝐵))
211, 20mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  DECID wdc 776  w3o 919   = wceq 1285  wcel 1434   class class class wbr 3811  cr 7251   < clt 7424  cle 7425  cz 8645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-addcom 7347  ax-addass 7349  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-0id 7355  ax-rnegex 7356  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-ltadd 7363
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4083  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-inn 8316  df-n0 8565  df-z 8646
This theorem is referenced by:  uzin  8945  exfzdc  9539  modfzo0difsn  9690  fzfig  9725  uzin2  10246  sumeq2d  10569  sumeq2  10570  infssuzex  10724
  Copyright terms: Public domain W3C validator