ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc GIF version

Theorem nqprloc 7377
Description: A cut produced from a rational is located. Lemma for nqprlu 7379. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7228 . . . . . . 7 ((𝑞Q𝐴Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
21ancoms 266 . . . . . 6 ((𝐴Q𝑞Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
32ad2antrr 480 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
4 vex 2692 . . . . . . . . . 10 𝑞 ∈ V
5 breq1 3940 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2832 . . . . . . . . 9 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
76biimpri 132 . . . . . . . 8 (𝑞 <Q 𝐴𝑞 ∈ {𝑥𝑥 <Q 𝐴})
87orcd 723 . . . . . . 7 (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
98a1i 9 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
10 simpr 109 . . . . . . . 8 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
11 breq1 3940 . . . . . . . 8 (𝑞 = 𝐴 → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210, 11syl5ibcom 154 . . . . . . 7 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴𝐴 <Q 𝑟))
13 vex 2692 . . . . . . . . 9 𝑟 ∈ V
14 breq2 3941 . . . . . . . . 9 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
1513, 14elab 2832 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
16 olc 701 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1715, 16sylbir 134 . . . . . . 7 (𝐴 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1812, 17syl6 33 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
19 ltsonq 7230 . . . . . . . . . 10 <Q Or Q
20 ltrelnq 7197 . . . . . . . . . 10 <Q ⊆ (Q × Q)
2119, 20sotri 4942 . . . . . . . . 9 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → 𝐴 <Q 𝑟)
2221, 17syl 14 . . . . . . . 8 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2322expcom 115 . . . . . . 7 (𝑞 <Q 𝑟 → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2423adantl 275 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
259, 18, 243jaod 1283 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → ((𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
263, 25mpd 13 . . . 4 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2726ex 114 . . 3 (((𝐴Q𝑞Q) ∧ 𝑟Q) → (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2827ralrimiva 2508 . 2 ((𝐴Q𝑞Q) → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2928ralrimiva 2508 1 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 962   = wceq 1332  wcel 1481  {cab 2126  wral 2417   class class class wbr 3937  Qcnq 7112   <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-enq 7179  df-nqqs 7180  df-ltnqqs 7185
This theorem is referenced by:  nqprxx  7378
  Copyright terms: Public domain W3C validator