ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc GIF version

Theorem nqprloc 7546
Description: A cut produced from a rational is located. Lemma for nqprlu 7548. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7397 . . . . . . 7 ((𝑞Q𝐴Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
21ancoms 268 . . . . . 6 ((𝐴Q𝑞Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
32ad2antrr 488 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
4 vex 2742 . . . . . . . . . 10 𝑞 ∈ V
5 breq1 4008 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2883 . . . . . . . . 9 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
76biimpri 133 . . . . . . . 8 (𝑞 <Q 𝐴𝑞 ∈ {𝑥𝑥 <Q 𝐴})
87orcd 733 . . . . . . 7 (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
98a1i 9 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
10 simpr 110 . . . . . . . 8 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
11 breq1 4008 . . . . . . . 8 (𝑞 = 𝐴 → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210, 11syl5ibcom 155 . . . . . . 7 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴𝐴 <Q 𝑟))
13 vex 2742 . . . . . . . . 9 𝑟 ∈ V
14 breq2 4009 . . . . . . . . 9 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
1513, 14elab 2883 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
16 olc 711 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1715, 16sylbir 135 . . . . . . 7 (𝐴 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1812, 17syl6 33 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
19 ltsonq 7399 . . . . . . . . . 10 <Q Or Q
20 ltrelnq 7366 . . . . . . . . . 10 <Q ⊆ (Q × Q)
2119, 20sotri 5026 . . . . . . . . 9 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → 𝐴 <Q 𝑟)
2221, 17syl 14 . . . . . . . 8 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2322expcom 116 . . . . . . 7 (𝑞 <Q 𝑟 → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2423adantl 277 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
259, 18, 243jaod 1304 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → ((𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
263, 25mpd 13 . . . 4 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2726ex 115 . . 3 (((𝐴Q𝑞Q) ∧ 𝑟Q) → (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2827ralrimiva 2550 . 2 ((𝐴Q𝑞Q) → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2928ralrimiva 2550 1 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  w3o 977   = wceq 1353  wcel 2148  {cab 2163  wral 2455   class class class wbr 4005  Qcnq 7281   <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-lti 7308  df-enq 7348  df-nqqs 7349  df-ltnqqs 7354
This theorem is referenced by:  nqprxx  7547
  Copyright terms: Public domain W3C validator