![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlem | GIF version |
Description: Lemma for addlocpr 7245. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlem | ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.qr | . . . 4 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
2 | ltrelnq 7074 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4529 | . . . . 5 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
4 | 3 | simpld 111 | . . . 4 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Q) |
6 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
7 | prop 7184 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
9 | addlocprlem.dlo | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7190 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 8, 9, 10 | syl2anc 406 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
13 | prop 7184 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
15 | addlocprlem.elo | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
16 | elprnql 7190 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
17 | 14, 15, 16 | syl2anc 406 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Q) |
18 | addclnq 7084 | . . . 4 ⊢ ((𝐷 ∈ Q ∧ 𝐸 ∈ Q) → (𝐷 +Q 𝐸) ∈ Q) | |
19 | 11, 17, 18 | syl2anc 406 | . . 3 ⊢ (𝜑 → (𝐷 +Q 𝐸) ∈ Q) |
20 | nqtri3or 7105 | . . 3 ⊢ ((𝑄 ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) | |
21 | 5, 19, 20 | syl2anc 406 | . 2 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) |
22 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
23 | addlocprlem.qppr | . . . . 5 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
24 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
25 | addlocprlem.du | . . . . 5 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
26 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
27 | addlocprlem.et | . . . . 5 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
28 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemlt 7240 | . . . 4 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
29 | orc 674 | . . . 4 ⊢ (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
30 | 28, 29 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
31 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemeq 7242 | . . . 4 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
32 | olc 673 | . . . 4 ⊢ (𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
33 | 31, 32 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
34 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemgt 7243 | . . . 4 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
35 | 34, 32 | syl6 33 | . . 3 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
36 | 30, 33, 35 | 3jaod 1250 | . 2 ⊢ (𝜑 → ((𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
37 | 21, 36 | mpd 13 | 1 ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 670 ∨ w3o 929 = wceq 1299 ∈ wcel 1448 〈cop 3477 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 1st c1st 5967 2nd c2nd 5968 Qcnq 6989 +Q cplq 6991 <Q cltq 6994 Pcnp 7000 +P cpp 7002 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-1o 6243 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-pli 7014 df-mi 7015 df-lti 7016 df-plpq 7053 df-mpq 7054 df-enq 7056 df-nqqs 7057 df-plqqs 7058 df-mqqs 7059 df-1nqqs 7060 df-rq 7061 df-ltnqqs 7062 df-inp 7175 df-iplp 7177 |
This theorem is referenced by: addlocpr 7245 |
Copyright terms: Public domain | W3C validator |