ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlem GIF version

Theorem addlocprlem 7690
Description: Lemma for addlocpr 7691. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlem (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlem
StepHypRef Expression
1 addlocprlem.qr . . . 4 (𝜑𝑄 <Q 𝑅)
2 ltrelnq 7520 . . . . . 6 <Q ⊆ (Q × Q)
32brel 4748 . . . . 5 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
43simpld 112 . . . 4 (𝑄 <Q 𝑅𝑄Q)
51, 4syl 14 . . 3 (𝜑𝑄Q)
6 addlocprlem.a . . . . . 6 (𝜑𝐴P)
7 prop 7630 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
9 addlocprlem.dlo . . . . 5 (𝜑𝐷 ∈ (1st𝐴))
10 elprnql 7636 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
118, 9, 10syl2anc 411 . . . 4 (𝜑𝐷Q)
12 addlocprlem.b . . . . . 6 (𝜑𝐵P)
13 prop 7630 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1412, 13syl 14 . . . . 5 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
15 addlocprlem.elo . . . . 5 (𝜑𝐸 ∈ (1st𝐵))
16 elprnql 7636 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
1714, 15, 16syl2anc 411 . . . 4 (𝜑𝐸Q)
18 addclnq 7530 . . . 4 ((𝐷Q𝐸Q) → (𝐷 +Q 𝐸) ∈ Q)
1911, 17, 18syl2anc 411 . . 3 (𝜑 → (𝐷 +Q 𝐸) ∈ Q)
20 nqtri3or 7551 . . 3 ((𝑄Q ∧ (𝐷 +Q 𝐸) ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄))
215, 19, 20syl2anc 411 . 2 (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄))
22 addlocprlem.p . . . . 5 (𝜑𝑃Q)
23 addlocprlem.qppr . . . . 5 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
24 addlocprlem.uup . . . . 5 (𝜑𝑈 ∈ (2nd𝐴))
25 addlocprlem.du . . . . 5 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
26 addlocprlem.tup . . . . 5 (𝜑𝑇 ∈ (2nd𝐵))
27 addlocprlem.et . . . . 5 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
286, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemlt 7686 . . . 4 (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
29 orc 716 . . . 4 (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
3028, 29syl6 33 . . 3 (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))))
316, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemeq 7688 . . . 4 (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
32 olc 715 . . . 4 (𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
3331, 32syl6 33 . . 3 (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))))
346, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemgt 7689 . . . 4 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
3534, 32syl6 33 . . 3 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))))
3630, 33, 353jaod 1319 . 2 (𝜑 → ((𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))))
3721, 36mpd 13 1 (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 712  w3o 982   = wceq 1375  wcel 2180  cop 3649   class class class wbr 4062  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  Qcnq 7435   +Q cplq 7437   <Q cltq 7440  Pcnp 7446   +P cpp 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-inp 7621  df-iplp 7623
This theorem is referenced by:  addlocpr  7691
  Copyright terms: Public domain W3C validator