![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlem | GIF version |
Description: Lemma for addlocpr 7596. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlem | ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.qr | . . . 4 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
2 | ltrelnq 7425 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4711 | . . . . 5 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
4 | 3 | simpld 112 | . . . 4 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Q) |
6 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
7 | prop 7535 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
9 | addlocprlem.dlo | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7541 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
13 | prop 7535 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
15 | addlocprlem.elo | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
16 | elprnql 7541 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
17 | 14, 15, 16 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Q) |
18 | addclnq 7435 | . . . 4 ⊢ ((𝐷 ∈ Q ∧ 𝐸 ∈ Q) → (𝐷 +Q 𝐸) ∈ Q) | |
19 | 11, 17, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐷 +Q 𝐸) ∈ Q) |
20 | nqtri3or 7456 | . . 3 ⊢ ((𝑄 ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) | |
21 | 5, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) |
22 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
23 | addlocprlem.qppr | . . . . 5 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
24 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
25 | addlocprlem.du | . . . . 5 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
26 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
27 | addlocprlem.et | . . . . 5 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
28 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemlt 7591 | . . . 4 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
29 | orc 713 | . . . 4 ⊢ (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
30 | 28, 29 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
31 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemeq 7593 | . . . 4 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
32 | olc 712 | . . . 4 ⊢ (𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
33 | 31, 32 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
34 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemgt 7594 | . . . 4 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
35 | 34, 32 | syl6 33 | . . 3 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
36 | 30, 33, 35 | 3jaod 1315 | . 2 ⊢ (𝜑 → ((𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
37 | 21, 36 | mpd 13 | 1 ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 1st c1st 6191 2nd c2nd 6192 Qcnq 7340 +Q cplq 7342 <Q cltq 7345 Pcnp 7351 +P cpp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-inp 7526 df-iplp 7528 |
This theorem is referenced by: addlocpr 7596 |
Copyright terms: Public domain | W3C validator |