| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlem | GIF version | ||
| Description: Lemma for addlocpr 7656. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlem | ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.qr | . . . 4 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
| 2 | ltrelnq 7485 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4731 | . . . . 5 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
| 5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Q) |
| 6 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 7 | prop 7595 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
| 9 | addlocprlem.dlo | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 10 | elprnql 7601 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Q) |
| 12 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 13 | prop 7595 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
| 15 | addlocprlem.elo | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 16 | elprnql 7601 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
| 17 | 14, 15, 16 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Q) |
| 18 | addclnq 7495 | . . . 4 ⊢ ((𝐷 ∈ Q ∧ 𝐸 ∈ Q) → (𝐷 +Q 𝐸) ∈ Q) | |
| 19 | 11, 17, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐷 +Q 𝐸) ∈ Q) |
| 20 | nqtri3or 7516 | . . 3 ⊢ ((𝑄 ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) | |
| 21 | 5, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) |
| 22 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
| 23 | addlocprlem.qppr | . . . . 5 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
| 24 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
| 25 | addlocprlem.du | . . . . 5 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
| 26 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
| 27 | addlocprlem.et | . . . . 5 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
| 28 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemlt 7651 | . . . 4 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
| 29 | orc 714 | . . . 4 ⊢ (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 30 | 28, 29 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 31 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemeq 7653 | . . . 4 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 32 | olc 713 | . . . 4 ⊢ (𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 33 | 31, 32 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 34 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemgt 7654 | . . . 4 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 35 | 34, 32 | syl6 33 | . . 3 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 36 | 30, 33, 35 | 3jaod 1317 | . 2 ⊢ (𝜑 → ((𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 37 | 21, 36 | mpd 13 | 1 ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 〈cop 3637 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 1st c1st 6231 2nd c2nd 6232 Qcnq 7400 +Q cplq 7402 <Q cltq 7405 Pcnp 7411 +P cpp 7413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-inp 7586 df-iplp 7588 |
| This theorem is referenced by: addlocpr 7656 |
| Copyright terms: Public domain | W3C validator |