| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlem | GIF version | ||
| Description: Lemma for addlocpr 7691. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlem | ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.qr | . . . 4 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
| 2 | ltrelnq 7520 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4748 | . . . . 5 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
| 5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Q) |
| 6 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 7 | prop 7630 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
| 9 | addlocprlem.dlo | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 10 | elprnql 7636 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Q) |
| 12 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 13 | prop 7630 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
| 15 | addlocprlem.elo | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 16 | elprnql 7636 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
| 17 | 14, 15, 16 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Q) |
| 18 | addclnq 7530 | . . . 4 ⊢ ((𝐷 ∈ Q ∧ 𝐸 ∈ Q) → (𝐷 +Q 𝐸) ∈ Q) | |
| 19 | 11, 17, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐷 +Q 𝐸) ∈ Q) |
| 20 | nqtri3or 7551 | . . 3 ⊢ ((𝑄 ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) | |
| 21 | 5, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄)) |
| 22 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
| 23 | addlocprlem.qppr | . . . . 5 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
| 24 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
| 25 | addlocprlem.du | . . . . 5 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
| 26 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
| 27 | addlocprlem.et | . . . . 5 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
| 28 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemlt 7686 | . . . 4 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
| 29 | orc 716 | . . . 4 ⊢ (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 30 | 28, 29 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 31 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemeq 7688 | . . . 4 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 32 | olc 715 | . . . 4 ⊢ (𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 33 | 31, 32 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 34 | 6, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27 | addlocprlemgt 7689 | . . . 4 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 35 | 34, 32 | syl6 33 | . . 3 ⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 36 | 30, 33, 35 | 3jaod 1319 | . 2 ⊢ (𝜑 → ((𝑄 <Q (𝐷 +Q 𝐸) ∨ 𝑄 = (𝐷 +Q 𝐸) ∨ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
| 37 | 21, 36 | mpd 13 | 1 ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 ∨ w3o 982 = wceq 1375 ∈ wcel 2180 〈cop 3649 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 1st c1st 6254 2nd c2nd 6255 Qcnq 7435 +Q cplq 7437 <Q cltq 7440 Pcnp 7446 +P cpp 7448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-inp 7621 df-iplp 7623 |
| This theorem is referenced by: addlocpr 7691 |
| Copyright terms: Public domain | W3C validator |