| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzdcel | GIF version | ||
| Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
| Ref | Expression |
|---|---|
| fzdcel | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fztri3or 10174 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾)) | |
| 2 | zltnle 9431 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) | |
| 3 | 2 | 3adant3 1020 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) |
| 4 | simpl 109 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑀 ≤ 𝐾) | |
| 5 | 4 | con3i 633 | . . . . . 6 ⊢ (¬ 𝑀 ≤ 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 6 | 3, 5 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | elfz 10149 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 8 | 7 | biimpd 144 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 9 | 6, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
| 10 | olc 713 | . . . . 5 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
| 11 | df-dc 837 | . . . . 5 ⊢ (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
| 12 | 10, 11 | sylibr 134 | . . . 4 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
| 13 | 9, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → DECID 𝐾 ∈ (𝑀...𝑁))) |
| 14 | orc 714 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
| 15 | 14, 11 | sylibr 134 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
| 16 | 15 | a1i 9 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))) |
| 17 | zltnle 9431 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | |
| 18 | 17 | ancoms 268 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
| 19 | 18 | 3adant2 1019 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
| 20 | simpr 110 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
| 21 | 20 | con3i 633 | . . . . . 6 ⊢ (¬ 𝐾 ≤ 𝑁 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 22 | 19, 21 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 23 | 22, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
| 24 | 23, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → DECID 𝐾 ∈ (𝑀...𝑁))) |
| 25 | 13, 16, 24 | 3jaod 1317 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁))) |
| 26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 ∨ w3o 980 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 < clt 8120 ≤ cle 8121 ℤcz 9385 ...cfz 10143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-n0 9309 df-z 9386 df-fz 10144 |
| This theorem is referenced by: fzodcel 10288 iseqf1olemqcl 10657 iseqf1olemmo 10663 seqf1oglem1 10677 seqf1oglem2 10678 bcval 10907 bccmpl 10912 bcval5 10921 bcpasc 10924 bccl 10925 fisumss 11753 fsum3ser 11758 binomlem 11844 mertenslemi1 11896 fprodssdc 11951 fprodm1 11959 fprodeq0 11978 pcfac 12723 elply2 15257 elplyd 15263 ply1termlem 15264 plyaddlem1 15269 plymullem1 15270 plycoeid3 15279 dvply1 15287 |
| Copyright terms: Public domain | W3C validator |