ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel GIF version

Theorem fzdcel 9832
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 9831 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
2 zltnle 9112 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
323adant3 1001 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
4 simpl 108 . . . . . . 7 ((𝑀𝐾𝐾𝑁) → 𝑀𝐾)
54con3i 621 . . . . . 6 𝑀𝐾 → ¬ (𝑀𝐾𝐾𝑁))
63, 5syl6bi 162 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀𝐾𝐾𝑁)))
7 elfz 9808 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
87biimpd 143 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀𝐾𝐾𝑁)))
96, 8nsyld 637 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁)))
10 olc 700 . . . . 5 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
11 df-dc 820 . . . . 5 (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
1210, 11sylibr 133 . . . 4 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))
139, 12syl6 33 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀DECID 𝐾 ∈ (𝑀...𝑁)))
14 orc 701 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
1514, 11sylibr 133 . . . 4 (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))
1615a1i 9 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)))
17 zltnle 9112 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
1817ancoms 266 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
19183adant2 1000 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
20 simpr 109 . . . . . . 7 ((𝑀𝐾𝐾𝑁) → 𝐾𝑁)
2120con3i 621 . . . . . 6 𝐾𝑁 → ¬ (𝑀𝐾𝐾𝑁))
2219, 21syl6bi 162 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀𝐾𝐾𝑁)))
2322, 8nsyld 637 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁)))
2423, 12syl6 33 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾DECID 𝐾 ∈ (𝑀...𝑁)))
2513, 16, 243jaod 1282 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁)))
261, 25mpd 13 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3o 961  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774   < clt 7812  cle 7813  cz 9066  ...cfz 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-fz 9803
This theorem is referenced by:  fzodcel  9941  iseqf1olemqcl  10271  iseqf1olemmo  10277  bcval  10507  bccmpl  10512  bcval5  10521  bcpasc  10524  bccl  10525  fisumss  11173  fsum3ser  11178  binomlem  11264  mertenslemi1  11316
  Copyright terms: Public domain W3C validator