ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel GIF version

Theorem fzdcel 10040
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 10039 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
2 zltnle 9299 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
323adant3 1017 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀𝐾))
4 simpl 109 . . . . . . 7 ((𝑀𝐾𝐾𝑁) → 𝑀𝐾)
54con3i 632 . . . . . 6 𝑀𝐾 → ¬ (𝑀𝐾𝐾𝑁))
63, 5syl6bi 163 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀𝐾𝐾𝑁)))
7 elfz 10014 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
87biimpd 144 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀𝐾𝐾𝑁)))
96, 8nsyld 648 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁)))
10 olc 711 . . . . 5 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
11 df-dc 835 . . . . 5 (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
1210, 11sylibr 134 . . . 4 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))
139, 12syl6 33 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀DECID 𝐾 ∈ (𝑀...𝑁)))
14 orc 712 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁)))
1514, 11sylibr 134 . . . 4 (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))
1615a1i 9 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)))
17 zltnle 9299 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
1817ancoms 268 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
19183adant2 1016 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
20 simpr 110 . . . . . . 7 ((𝑀𝐾𝐾𝑁) → 𝐾𝑁)
2120con3i 632 . . . . . 6 𝐾𝑁 → ¬ (𝑀𝐾𝐾𝑁))
2219, 21syl6bi 163 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀𝐾𝐾𝑁)))
2322, 8nsyld 648 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁)))
2423, 12syl6 33 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾DECID 𝐾 ∈ (𝑀...𝑁)))
2513, 16, 243jaod 1304 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁)))
261, 25mpd 13 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3o 977  w3a 978  wcel 2148   class class class wbr 4004  (class class class)co 5875   < clt 7992  cle 7993  cz 9253  ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-fz 10009
This theorem is referenced by:  fzodcel  10152  iseqf1olemqcl  10486  iseqf1olemmo  10492  bcval  10729  bccmpl  10734  bcval5  10743  bcpasc  10746  bccl  10747  fisumss  11400  fsum3ser  11405  binomlem  11491  mertenslemi1  11543  fprodssdc  11598  fprodm1  11606  fprodeq0  11625  pcfac  12348
  Copyright terms: Public domain W3C validator