![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzdcel | GIF version |
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
Ref | Expression |
---|---|
fzdcel | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fztri3or 10108 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾)) | |
2 | zltnle 9366 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) | |
3 | 2 | 3adant3 1019 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) |
4 | simpl 109 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑀 ≤ 𝐾) | |
5 | 4 | con3i 633 | . . . . . 6 ⊢ (¬ 𝑀 ≤ 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
6 | 3, 5 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | elfz 10083 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
8 | 7 | biimpd 144 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 6, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
10 | olc 712 | . . . . 5 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
11 | df-dc 836 | . . . . 5 ⊢ (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
12 | 10, 11 | sylibr 134 | . . . 4 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
13 | 9, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → DECID 𝐾 ∈ (𝑀...𝑁))) |
14 | orc 713 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
15 | 14, 11 | sylibr 134 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
16 | 15 | a1i 9 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))) |
17 | zltnle 9366 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | |
18 | 17 | ancoms 268 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
19 | 18 | 3adant2 1018 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
20 | simpr 110 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
21 | 20 | con3i 633 | . . . . . 6 ⊢ (¬ 𝐾 ≤ 𝑁 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
22 | 19, 21 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
23 | 22, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
24 | 23, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → DECID 𝐾 ∈ (𝑀...𝑁))) |
25 | 13, 16, 24 | 3jaod 1315 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 < clt 8056 ≤ cle 8057 ℤcz 9320 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-fz 10078 |
This theorem is referenced by: fzodcel 10222 iseqf1olemqcl 10573 iseqf1olemmo 10579 seqf1oglem1 10593 seqf1oglem2 10594 bcval 10823 bccmpl 10828 bcval5 10837 bcpasc 10840 bccl 10841 fisumss 11538 fsum3ser 11543 binomlem 11629 mertenslemi1 11681 fprodssdc 11736 fprodm1 11744 fprodeq0 11763 pcfac 12491 elply2 14914 elplyd 14920 ply1termlem 14921 plyaddlem1 14926 plymullem1 14927 dvply1 14943 |
Copyright terms: Public domain | W3C validator |