![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzdcel | GIF version |
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
Ref | Expression |
---|---|
fzdcel | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fztri3or 10057 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾)) | |
2 | zltnle 9317 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) | |
3 | 2 | 3adant3 1019 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) |
4 | simpl 109 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑀 ≤ 𝐾) | |
5 | 4 | con3i 633 | . . . . . 6 ⊢ (¬ 𝑀 ≤ 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
6 | 3, 5 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | elfz 10032 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
8 | 7 | biimpd 144 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 6, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
10 | olc 712 | . . . . 5 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
11 | df-dc 836 | . . . . 5 ⊢ (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
12 | 10, 11 | sylibr 134 | . . . 4 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
13 | 9, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → DECID 𝐾 ∈ (𝑀...𝑁))) |
14 | orc 713 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
15 | 14, 11 | sylibr 134 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
16 | 15 | a1i 9 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))) |
17 | zltnle 9317 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | |
18 | 17 | ancoms 268 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
19 | 18 | 3adant2 1018 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
20 | simpr 110 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
21 | 20 | con3i 633 | . . . . . 6 ⊢ (¬ 𝐾 ≤ 𝑁 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
22 | 19, 21 | biimtrdi 163 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
23 | 22, 8 | nsyld 649 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
24 | 23, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → DECID 𝐾 ∈ (𝑀...𝑁))) |
25 | 13, 16, 24 | 3jaod 1315 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 ∧ w3a 980 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5891 < clt 8010 ≤ cle 8011 ℤcz 9271 ...cfz 10026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-inn 8938 df-n0 9195 df-z 9272 df-fz 10027 |
This theorem is referenced by: fzodcel 10170 iseqf1olemqcl 10504 iseqf1olemmo 10510 bcval 10747 bccmpl 10752 bcval5 10761 bcpasc 10764 bccl 10765 fisumss 11418 fsum3ser 11423 binomlem 11509 mertenslemi1 11561 fprodssdc 11616 fprodm1 11624 fprodeq0 11643 pcfac 12366 |
Copyright terms: Public domain | W3C validator |