![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzdcel | GIF version |
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
Ref | Expression |
---|---|
fzdcel | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fztri3or 9602 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾)) | |
2 | zltnle 8894 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) | |
3 | 2 | 3adant3 966 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) |
4 | simpl 108 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑀 ≤ 𝐾) | |
5 | 4 | con3i 600 | . . . . . 6 ⊢ (¬ 𝑀 ≤ 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
6 | 3, 5 | syl6bi 162 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | elfz 9579 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
8 | 7 | biimpd 143 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 6, 8 | nsyld 615 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
10 | olc 670 | . . . . 5 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
11 | df-dc 784 | . . . . 5 ⊢ (DECID 𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
12 | 10, 11 | sylibr 133 | . . . 4 ⊢ (¬ 𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
13 | 9, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 → DECID 𝐾 ∈ (𝑀...𝑁))) |
14 | orc 671 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...𝑁) ∨ ¬ 𝐾 ∈ (𝑀...𝑁))) | |
15 | 14, 11 | sylibr 133 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁)) |
16 | 15 | a1i 9 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) → DECID 𝐾 ∈ (𝑀...𝑁))) |
17 | zltnle 8894 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | |
18 | 17 | ancoms 265 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
19 | 18 | 3adant2 965 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
20 | simpr 109 | . . . . . . 7 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
21 | 20 | con3i 600 | . . . . . 6 ⊢ (¬ 𝐾 ≤ 𝑁 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
22 | 19, 21 | syl6bi 162 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
23 | 22, 8 | nsyld 615 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → ¬ 𝐾 ∈ (𝑀...𝑁))) |
24 | 23, 12 | syl6 33 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝐾 → DECID 𝐾 ∈ (𝑀...𝑁))) |
25 | 13, 16, 24 | 3jaod 1247 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾) → DECID 𝐾 ∈ (𝑀...𝑁))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 667 DECID wdc 783 ∨ w3o 926 ∧ w3a 927 ∈ wcel 1445 class class class wbr 3867 (class class class)co 5690 < clt 7619 ≤ cle 7620 ℤcz 8848 ...cfz 9573 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-fz 9574 |
This theorem is referenced by: fzodcel 9712 iseqf1olemqcl 10036 iseqf1olemmo 10042 bcval 10272 bccmpl 10277 bcval5 10286 bcpasc 10289 bccl 10290 fisumss 10935 fsum3ser 10940 binomlem 11026 mertenslemi1 11078 |
Copyright terms: Public domain | W3C validator |