ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzlt2d GIF version

Theorem frec2uzlt2d 10208
Description: The mapping 𝐺 (see frec2uz0d 10203) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
frec2uzltd.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzlt2d (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzlt2d
StepHypRef Expression
1 frec2uz.1 . . 3 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . 3 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frec2uzzd.a . . 3 (𝜑𝐴 ∈ ω)
4 frec2uzltd.b . . 3 (𝜑𝐵 ∈ ω)
51, 2, 3, 4frec2uzltd 10207 . 2 (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
6 nntri3or 6397 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
73, 4, 6syl2anc 409 . . 3 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
8 ax-1 6 . . . . 5 (𝐴𝐵 → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵))
98a1i 9 . . . 4 (𝜑 → (𝐴𝐵 → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵)))
10 fveq2 5429 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐺𝐴) = (𝐺𝐵))
1110adantl 275 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐺𝐴) = (𝐺𝐵))
1211breq2d 3949 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → ((𝐺𝐴) < (𝐺𝐴) ↔ (𝐺𝐴) < (𝐺𝐵)))
1312biimpar 295 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ (𝐺𝐴) < (𝐺𝐵)) → (𝐺𝐴) < (𝐺𝐴))
141, 2, 3frec2uzzd 10204 . . . . . . . . . . 11 (𝜑 → (𝐺𝐴) ∈ ℤ)
1514adantr 274 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → (𝐺𝐴) ∈ ℤ)
1615adantr 274 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ (𝐺𝐴) < (𝐺𝐵)) → (𝐺𝐴) ∈ ℤ)
1716zred 9197 . . . . . . . 8 (((𝜑𝐴 = 𝐵) ∧ (𝐺𝐴) < (𝐺𝐵)) → (𝐺𝐴) ∈ ℝ)
1817ltnrd 7899 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ (𝐺𝐴) < (𝐺𝐵)) → ¬ (𝐺𝐴) < (𝐺𝐴))
1913, 18pm2.21dd 610 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ (𝐺𝐴) < (𝐺𝐵)) → 𝐴𝐵)
2019ex 114 . . . . 5 ((𝜑𝐴 = 𝐵) → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵))
2120ex 114 . . . 4 (𝜑 → (𝐴 = 𝐵 → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵)))
221, 2, 4frec2uzzd 10204 . . . . . . . . 9 (𝜑 → (𝐺𝐵) ∈ ℤ)
2322adantr 274 . . . . . . . 8 ((𝜑𝐵𝐴) → (𝐺𝐵) ∈ ℤ)
2423zred 9197 . . . . . . 7 ((𝜑𝐵𝐴) → (𝐺𝐵) ∈ ℝ)
2514adantr 274 . . . . . . . 8 ((𝜑𝐵𝐴) → (𝐺𝐴) ∈ ℤ)
2625zred 9197 . . . . . . 7 ((𝜑𝐵𝐴) → (𝐺𝐴) ∈ ℝ)
271, 2, 4, 3frec2uzltd 10207 . . . . . . . 8 (𝜑 → (𝐵𝐴 → (𝐺𝐵) < (𝐺𝐴)))
2827imp 123 . . . . . . 7 ((𝜑𝐵𝐴) → (𝐺𝐵) < (𝐺𝐴))
2924, 26, 28ltnsymd 7906 . . . . . 6 ((𝜑𝐵𝐴) → ¬ (𝐺𝐴) < (𝐺𝐵))
3029pm2.21d 609 . . . . 5 ((𝜑𝐵𝐴) → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵))
3130ex 114 . . . 4 (𝜑 → (𝐵𝐴 → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵)))
329, 21, 313jaod 1283 . . 3 (𝜑 → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵)))
337, 32mpd 13 . 2 (𝜑 → ((𝐺𝐴) < (𝐺𝐵) → 𝐴𝐵))
345, 33impbid 128 1 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 962   = wceq 1332  wcel 1481   class class class wbr 3937  cmpt 3997  ωcom 4512  cfv 5131  (class class class)co 5782  freccfrec 6295  1c1 7645   + caddc 7647   < clt 7824  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  frec2uzisod  10211  frec2uzled  10233
  Copyright terms: Public domain W3C validator