| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzlt2d | GIF version | ||
| Description: The mapping 𝐺 (see frec2uz0d 10616) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| frec2uzltd.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
| Ref | Expression |
|---|---|
| frec2uzlt2d | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 4 | frec2uzltd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ω) | |
| 5 | 1, 2, 3, 4 | frec2uzltd 10620 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 6 | nntri3or 6637 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 7 | 3, 4, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 8 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
| 10 | fveq2 5626 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
| 11 | 10 | adantl 277 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 12 | 11 | breq2d 4094 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐴) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 13 | 12 | biimpar 297 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) < (𝐺‘𝐴)) |
| 14 | 1, 2, 3 | frec2uzzd 10617 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
| 15 | 14 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) ∈ ℤ) |
| 16 | 15 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℤ) |
| 17 | 16 | zred 9565 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℝ) |
| 18 | 17 | ltnrd 8254 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → ¬ (𝐺‘𝐴) < (𝐺‘𝐴)) |
| 19 | 13, 18 | pm2.21dd 623 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → 𝐴 ∈ 𝐵) |
| 20 | 19 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
| 21 | 20 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
| 22 | 1, 2, 4 | frec2uzzd 10617 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
| 23 | 22 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℤ) |
| 24 | 23 | zred 9565 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℝ) |
| 25 | 14 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℤ) |
| 26 | 25 | zred 9565 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℝ) |
| 27 | 1, 2, 4, 3 | frec2uzltd 10620 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
| 28 | 27 | imp 124 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) < (𝐺‘𝐴)) |
| 29 | 24, 26, 28 | ltnsymd 8262 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ (𝐺‘𝐴) < (𝐺‘𝐵)) |
| 30 | 29 | pm2.21d 622 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
| 31 | 30 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
| 32 | 9, 21, 31 | 3jaod 1338 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
| 33 | 7, 32 | mpd 13 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
| 34 | 5, 33 | impbid 129 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ↦ cmpt 4144 ωcom 4681 ‘cfv 5317 (class class class)co 6000 freccfrec 6534 1c1 7996 + caddc 7998 < clt 8177 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: frec2uzisod 10624 frec2uzled 10646 nninfctlemfo 12556 |
| Copyright terms: Public domain | W3C validator |