![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzlt2d | GIF version |
Description: The mapping 𝐺 (see frec2uz0d 10402) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
frec2uzltd.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
Ref | Expression |
---|---|
frec2uzlt2d | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
4 | frec2uzltd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ω) | |
5 | 1, 2, 3, 4 | frec2uzltd 10406 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
6 | nntri3or 6497 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
7 | 3, 4, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
8 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) | |
9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
10 | fveq2 5517 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
11 | 10 | adantl 277 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) = (𝐺‘𝐵)) |
12 | 11 | breq2d 4017 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐴) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
13 | 12 | biimpar 297 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) < (𝐺‘𝐴)) |
14 | 1, 2, 3 | frec2uzzd 10403 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
15 | 14 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) ∈ ℤ) |
16 | 15 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℤ) |
17 | 16 | zred 9378 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℝ) |
18 | 17 | ltnrd 8072 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → ¬ (𝐺‘𝐴) < (𝐺‘𝐴)) |
19 | 13, 18 | pm2.21dd 620 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → 𝐴 ∈ 𝐵) |
20 | 19 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
21 | 20 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
22 | 1, 2, 4 | frec2uzzd 10403 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
23 | 22 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℤ) |
24 | 23 | zred 9378 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℝ) |
25 | 14 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℤ) |
26 | 25 | zred 9378 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℝ) |
27 | 1, 2, 4, 3 | frec2uzltd 10406 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
28 | 27 | imp 124 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) < (𝐺‘𝐴)) |
29 | 24, 26, 28 | ltnsymd 8080 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ (𝐺‘𝐴) < (𝐺‘𝐵)) |
30 | 29 | pm2.21d 619 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
31 | 30 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
32 | 9, 21, 31 | 3jaod 1304 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
33 | 7, 32 | mpd 13 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
34 | 5, 33 | impbid 129 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ↦ cmpt 4066 ωcom 4591 ‘cfv 5218 (class class class)co 5878 freccfrec 6394 1c1 7815 + caddc 7817 < clt 7995 ℤcz 9256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 |
This theorem is referenced by: frec2uzisod 10410 frec2uzled 10432 |
Copyright terms: Public domain | W3C validator |