Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzlt2d | GIF version |
Description: The mapping 𝐺 (see frec2uz0d 10355) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
frec2uzltd.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
Ref | Expression |
---|---|
frec2uzlt2d | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
4 | frec2uzltd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ω) | |
5 | 1, 2, 3, 4 | frec2uzltd 10359 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
6 | nntri3or 6472 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
7 | 3, 4, 6 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
8 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) | |
9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
10 | fveq2 5496 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
11 | 10 | adantl 275 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) = (𝐺‘𝐵)) |
12 | 11 | breq2d 4001 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐴) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
13 | 12 | biimpar 295 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) < (𝐺‘𝐴)) |
14 | 1, 2, 3 | frec2uzzd 10356 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
15 | 14 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) ∈ ℤ) |
16 | 15 | adantr 274 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℤ) |
17 | 16 | zred 9334 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℝ) |
18 | 17 | ltnrd 8031 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → ¬ (𝐺‘𝐴) < (𝐺‘𝐴)) |
19 | 13, 18 | pm2.21dd 615 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → 𝐴 ∈ 𝐵) |
20 | 19 | ex 114 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
21 | 20 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
22 | 1, 2, 4 | frec2uzzd 10356 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
23 | 22 | adantr 274 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℤ) |
24 | 23 | zred 9334 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℝ) |
25 | 14 | adantr 274 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℤ) |
26 | 25 | zred 9334 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℝ) |
27 | 1, 2, 4, 3 | frec2uzltd 10359 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
28 | 27 | imp 123 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) < (𝐺‘𝐴)) |
29 | 24, 26, 28 | ltnsymd 8039 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ (𝐺‘𝐴) < (𝐺‘𝐵)) |
30 | 29 | pm2.21d 614 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
31 | 30 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
32 | 9, 21, 31 | 3jaod 1299 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
33 | 7, 32 | mpd 13 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
34 | 5, 33 | impbid 128 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ↦ cmpt 4050 ωcom 4574 ‘cfv 5198 (class class class)co 5853 freccfrec 6369 1c1 7775 + caddc 7777 < clt 7954 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 |
This theorem is referenced by: frec2uzisod 10363 frec2uzled 10385 |
Copyright terms: Public domain | W3C validator |