![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzlt2d | GIF version |
Description: The mapping 𝐺 (see frec2uz0d 9955) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
frec2uzltd.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
Ref | Expression |
---|---|
frec2uzlt2d | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
4 | frec2uzltd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ω) | |
5 | 1, 2, 3, 4 | frec2uzltd 9959 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
6 | nntri3or 6294 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
7 | 3, 4, 6 | syl2anc 404 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
8 | ax-1 5 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) | |
9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
10 | fveq2 5340 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
11 | 10 | adantl 272 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) = (𝐺‘𝐵)) |
12 | 11 | breq2d 3879 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐴) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
13 | 12 | biimpar 292 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) < (𝐺‘𝐴)) |
14 | 1, 2, 3 | frec2uzzd 9956 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
15 | 14 | adantr 271 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐺‘𝐴) ∈ ℤ) |
16 | 15 | adantr 271 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℤ) |
17 | 16 | zred 8967 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → (𝐺‘𝐴) ∈ ℝ) |
18 | 17 | ltnrd 7693 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → ¬ (𝐺‘𝐴) < (𝐺‘𝐴)) |
19 | 13, 18 | pm2.21dd 588 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ (𝐺‘𝐴) < (𝐺‘𝐵)) → 𝐴 ∈ 𝐵) |
20 | 19 | ex 114 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
21 | 20 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
22 | 1, 2, 4 | frec2uzzd 9956 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
23 | 22 | adantr 271 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℤ) |
24 | 23 | zred 8967 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) ∈ ℝ) |
25 | 14 | adantr 271 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℤ) |
26 | 25 | zred 8967 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐴) ∈ ℝ) |
27 | 1, 2, 4, 3 | frec2uzltd 9959 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
28 | 27 | imp 123 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → (𝐺‘𝐵) < (𝐺‘𝐴)) |
29 | 24, 26, 28 | ltnsymd 7700 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ (𝐺‘𝐴) < (𝐺‘𝐵)) |
30 | 29 | pm2.21d 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
31 | 30 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
32 | 9, 21, 31 | 3jaod 1247 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵))) |
33 | 7, 32 | mpd 13 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) < (𝐺‘𝐵) → 𝐴 ∈ 𝐵)) |
34 | 5, 33 | impbid 128 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 926 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 ↦ cmpt 3921 ωcom 4433 ‘cfv 5049 (class class class)co 5690 freccfrec 6193 1c1 7448 + caddc 7450 < clt 7619 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 |
This theorem is referenced by: frec2uzisod 9963 frec2uzled 9985 |
Copyright terms: Public domain | W3C validator |