| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4onn | GIF version | ||
| Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| 4onn | ⊢ 4o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4o 6518 | . 2 ⊢ 4o = suc 3o | |
| 2 | 3onn 6621 | . . 3 ⊢ 3o ∈ ω | |
| 3 | peano2 4651 | . . 3 ⊢ (3o ∈ ω → suc 3o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 3o ∈ ω |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 4o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 suc csuc 4420 ωcom 4646 3oc3o 6510 4oc4o 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 df-1o 6515 df-2o 6516 df-3o 6517 df-4o 6518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |