![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2onn | GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6420 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 6523 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 4596 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2250 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 suc csuc 4367 ωcom 4591 1oc1o 6412 2oc2o 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-1o 6419 df-2o 6420 |
This theorem is referenced by: 3onn 6525 2ssom 6527 nn2m 6530 pw1fin 6912 nninfex 7122 infnninfOLD 7125 nnnninf 7126 isomnimap 7137 enomnilem 7138 fodjuf 7145 ismkvmap 7154 ismkvnex 7155 enmkvlem 7161 iswomnimap 7166 enwomnilem 7169 nninfdcinf 7171 nninfwlporlem 7173 nninfwlpoimlemg 7175 exmidonfinlem 7194 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 pw1ne3 7231 3nsssucpw1 7237 2onetap 7256 2omotaplemap 7258 2omotaplemst 7259 exmidmotap 7262 prarloclemarch2 7420 nq02m 7466 prarloclemlt 7494 prarloclemlo 7495 prarloclem3 7498 prarloclemn 7500 prarloclem5 7501 prarloclemcalc 7503 hash3 10795 unct 12445 xpsfrnel 12768 xpscf 12771 2o01f 14831 pwle2 14833 pwf1oexmid 14834 subctctexmid 14835 0nninf 14838 nnsf 14839 nninfsellemdc 14844 nninfself 14847 nninffeq 14854 isomninnlem 14863 iswomninnlem 14882 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |