| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | GIF version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6484 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1onn 6587 | . . 3 ⊢ 1o ∈ ω | |
| 3 | peano2 4632 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 suc csuc 4401 ωcom 4627 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: 3onn 6589 2ssom 6591 nn2m 6594 pw1fin 6980 nninfex 7196 infnninfOLD 7200 nnnninf 7201 isomnimap 7212 enomnilem 7213 fodjuf 7220 ismkvmap 7229 ismkvnex 7230 enmkvlem 7236 iswomnimap 7241 enwomnilem 7244 nninfdcinf 7246 nninfwlporlem 7248 nninfwlpoimlemg 7250 exmidonfinlem 7272 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 pw1ne3 7313 3nsssucpw1 7319 2onetap 7338 2omotaplemap 7340 2omotaplemst 7341 exmidmotap 7344 prarloclemarch2 7503 nq02m 7549 prarloclemlt 7577 prarloclemlo 7578 prarloclem3 7581 prarloclemn 7583 prarloclem5 7584 prarloclemcalc 7586 hash3 10922 unct 12684 xpsfrnel 13046 xpscf 13049 znidom 14289 znidomb 14290 2o01f 15725 2omap 15726 2omapen 15727 pwle2 15729 pwf1oexmid 15730 subctctexmid 15731 0nninf 15735 nnsf 15736 nninfsellemdc 15741 nninfself 15744 nninffeq 15751 isomninnlem 15761 iswomninnlem 15780 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |