| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | GIF version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6477 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1onn 6580 | . . 3 ⊢ 1o ∈ ω | |
| 3 | peano2 4632 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 suc csuc 4401 ωcom 4627 1oc1o 6469 2oc2o 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6476 df-2o 6477 |
| This theorem is referenced by: 3onn 6582 2ssom 6584 nn2m 6587 pw1fin 6973 nninfex 7189 infnninfOLD 7193 nnnninf 7194 isomnimap 7205 enomnilem 7206 fodjuf 7213 ismkvmap 7222 ismkvnex 7223 enmkvlem 7229 iswomnimap 7234 enwomnilem 7237 nninfdcinf 7239 nninfwlporlem 7241 nninfwlpoimlemg 7243 exmidonfinlem 7263 exmidfodomrlemr 7272 exmidfodomrlemrALT 7273 pw1ne3 7300 3nsssucpw1 7306 2onetap 7325 2omotaplemap 7327 2omotaplemst 7328 exmidmotap 7331 prarloclemarch2 7489 nq02m 7535 prarloclemlt 7563 prarloclemlo 7564 prarloclem3 7567 prarloclemn 7569 prarloclem5 7570 prarloclemcalc 7572 hash3 10908 unct 12670 xpsfrnel 13013 xpscf 13016 znidom 14239 znidomb 14240 2o01f 15667 pwle2 15669 pwf1oexmid 15670 subctctexmid 15671 0nninf 15675 nnsf 15676 nninfsellemdc 15681 nninfself 15684 nninffeq 15691 isomninnlem 15701 iswomninnlem 15720 ismkvnnlem 15723 |
| Copyright terms: Public domain | W3C validator |