Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2onn | GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6393 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 6496 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 4577 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 suc csuc 4348 ωcom 4572 1oc1o 6385 2oc2o 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-suc 4354 df-iom 4573 df-1o 6392 df-2o 6393 |
This theorem is referenced by: 3onn 6498 nn2m 6502 pw1fin 6884 nninfex 7094 infnninfOLD 7097 nnnninf 7098 isomnimap 7109 enomnilem 7110 fodjuf 7117 ismkvmap 7126 ismkvnex 7127 enmkvlem 7133 iswomnimap 7138 enwomnilem 7141 exmidonfinlem 7157 exmidfodomrlemr 7166 exmidfodomrlemrALT 7167 pw1ne3 7194 3nsssucpw1 7200 prarloclemarch2 7368 nq02m 7414 prarloclemlt 7442 prarloclemlo 7443 prarloclem3 7446 prarloclemn 7448 prarloclem5 7449 prarloclemcalc 7451 hash3 10735 unct 12384 2ssom 13759 2o01f 13951 pwle2 13953 pwf1oexmid 13954 subctctexmid 13956 0nninf 13959 nnsf 13960 nninfsellemdc 13965 nninfself 13968 nninffeq 13975 isomninnlem 13984 iswomninnlem 14003 ismkvnnlem 14006 |
Copyright terms: Public domain | W3C validator |