![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2onn | GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6472 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 6575 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 4628 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 suc csuc 4397 ωcom 4623 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-1o 6471 df-2o 6472 |
This theorem is referenced by: 3onn 6577 2ssom 6579 nn2m 6582 pw1fin 6968 nninfex 7182 infnninfOLD 7186 nnnninf 7187 isomnimap 7198 enomnilem 7199 fodjuf 7206 ismkvmap 7215 ismkvnex 7216 enmkvlem 7222 iswomnimap 7227 enwomnilem 7230 nninfdcinf 7232 nninfwlporlem 7234 nninfwlpoimlemg 7236 exmidonfinlem 7255 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 pw1ne3 7292 3nsssucpw1 7298 2onetap 7317 2omotaplemap 7319 2omotaplemst 7320 exmidmotap 7323 prarloclemarch2 7481 nq02m 7527 prarloclemlt 7555 prarloclemlo 7556 prarloclem3 7559 prarloclemn 7561 prarloclem5 7562 prarloclemcalc 7564 hash3 10887 unct 12602 xpsfrnel 12930 xpscf 12933 znidom 14156 znidomb 14157 2o01f 15557 pwle2 15559 pwf1oexmid 15560 subctctexmid 15561 0nninf 15564 nnsf 15565 nninfsellemdc 15570 nninfself 15573 nninffeq 15580 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |