| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | GIF version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6513 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1onn 6616 | . . 3 ⊢ 1o ∈ ω | |
| 3 | peano2 4648 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 suc csuc 4417 ωcom 4643 1oc1o 6505 2oc2o 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-suc 4423 df-iom 4644 df-1o 6512 df-2o 6513 |
| This theorem is referenced by: 3onn 6618 2ssom 6620 nn2m 6623 pw1fin 7019 nninfex 7235 infnninfOLD 7239 nnnninf 7240 isomnimap 7251 enomnilem 7252 fodjuf 7259 ismkvmap 7268 ismkvnex 7269 enmkvlem 7275 iswomnimap 7280 enwomnilem 7283 nninfdcinf 7285 nninfwlporlem 7287 nninfwlpoimlemg 7289 exmidonfinlem 7314 exmidfodomrlemr 7323 exmidfodomrlemrALT 7324 pw1ne3 7355 3nsssucpw1 7361 2onetap 7380 2omotaplemap 7382 2omotaplemst 7383 exmidmotap 7386 prarloclemarch2 7545 nq02m 7591 prarloclemlt 7619 prarloclemlo 7620 prarloclem3 7623 prarloclemn 7625 prarloclem5 7626 prarloclemcalc 7628 hash3 10971 hash2en 11001 unct 12863 xpsfrnel 13226 xpscf 13229 znidom 14469 znidomb 14470 upgrfi 15748 2o01f 16046 2omap 16047 2omapen 16048 pwle2 16050 pwf1oexmid 16051 subctctexmid 16052 0nninf 16056 nnsf 16057 nninfsellemdc 16062 nninfself 16065 nninffeq 16072 isomninnlem 16084 iswomninnlem 16103 ismkvnnlem 16106 |
| Copyright terms: Public domain | W3C validator |