![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2onn | GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6470 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 6573 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 4627 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 suc csuc 4396 ωcom 4622 1oc1o 6462 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-1o 6469 df-2o 6470 |
This theorem is referenced by: 3onn 6575 2ssom 6577 nn2m 6580 pw1fin 6966 nninfex 7180 infnninfOLD 7184 nnnninf 7185 isomnimap 7196 enomnilem 7197 fodjuf 7204 ismkvmap 7213 ismkvnex 7214 enmkvlem 7220 iswomnimap 7225 enwomnilem 7228 nninfdcinf 7230 nninfwlporlem 7232 nninfwlpoimlemg 7234 exmidonfinlem 7253 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 pw1ne3 7290 3nsssucpw1 7296 2onetap 7315 2omotaplemap 7317 2omotaplemst 7318 exmidmotap 7321 prarloclemarch2 7479 nq02m 7525 prarloclemlt 7553 prarloclemlo 7554 prarloclem3 7557 prarloclemn 7559 prarloclem5 7560 prarloclemcalc 7562 hash3 10884 unct 12599 xpsfrnel 12927 xpscf 12930 znidom 14145 znidomb 14146 2o01f 15487 pwle2 15489 pwf1oexmid 15490 subctctexmid 15491 0nninf 15494 nnsf 15495 nninfsellemdc 15500 nninfself 15503 nninffeq 15510 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |