| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | GIF version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6569 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1onn 6674 | . . 3 ⊢ 1o ∈ ω | |
| 3 | peano2 4687 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 suc csuc 4456 ωcom 4682 1oc1o 6561 2oc2o 6562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-1o 6568 df-2o 6569 |
| This theorem is referenced by: 3onn 6676 2ssom 6678 nn2m 6681 1ndom2 7034 pw1fin 7080 nninfex 7296 infnninfOLD 7300 nnnninf 7301 isomnimap 7312 enomnilem 7313 fodjuf 7320 ismkvmap 7329 ismkvnex 7330 enmkvlem 7336 iswomnimap 7341 enwomnilem 7344 nninfdcinf 7346 nninfwlporlem 7348 nninfwlpoimlemg 7350 exmidonfinlem 7379 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 pw1ne3 7423 3nsssucpw1 7429 2onetap 7449 2omotaplemap 7451 2omotaplemst 7452 exmidmotap 7455 prarloclemarch2 7614 nq02m 7660 prarloclemlt 7688 prarloclemlo 7689 prarloclem3 7692 prarloclemn 7694 prarloclem5 7695 prarloclemcalc 7697 hash3 11043 hash2en 11073 unct 13021 xpsfrnel 13385 xpscf 13388 znidom 14629 znidomb 14630 upgrfi 15910 3dom 16381 2o01f 16387 2omap 16388 2omapen 16389 pwle2 16393 pwf1oexmid 16394 subctctexmid 16395 0nninf 16400 nnsf 16401 nninfsellemdc 16406 nninfself 16409 nninffeq 16416 isomninnlem 16428 iswomninnlem 16447 ismkvnnlem 16450 |
| Copyright terms: Public domain | W3C validator |