| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | GIF version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6553 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1onn 6656 | . . 3 ⊢ 1o ∈ ω | |
| 3 | peano2 4684 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 suc csuc 4453 ωcom 4679 1oc1o 6545 2oc2o 6546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4459 df-iom 4680 df-1o 6552 df-2o 6553 |
| This theorem is referenced by: 3onn 6658 2ssom 6660 nn2m 6663 1ndom2 7014 pw1fin 7060 nninfex 7276 infnninfOLD 7280 nnnninf 7281 isomnimap 7292 enomnilem 7293 fodjuf 7300 ismkvmap 7309 ismkvnex 7310 enmkvlem 7316 iswomnimap 7321 enwomnilem 7324 nninfdcinf 7326 nninfwlporlem 7328 nninfwlpoimlemg 7330 exmidonfinlem 7359 exmidfodomrlemr 7368 exmidfodomrlemrALT 7369 pw1ne3 7403 3nsssucpw1 7409 2onetap 7429 2omotaplemap 7431 2omotaplemst 7432 exmidmotap 7435 prarloclemarch2 7594 nq02m 7640 prarloclemlt 7668 prarloclemlo 7669 prarloclem3 7672 prarloclemn 7674 prarloclem5 7675 prarloclemcalc 7677 hash3 11022 hash2en 11052 unct 12999 xpsfrnel 13363 xpscf 13366 znidom 14606 znidomb 14607 upgrfi 15887 2o01f 16289 2omap 16290 2omapen 16291 pwle2 16295 pwf1oexmid 16296 subctctexmid 16297 0nninf 16301 nnsf 16302 nninfsellemdc 16307 nninfself 16310 nninffeq 16317 isomninnlem 16329 iswomninnlem 16348 ismkvnnlem 16351 |
| Copyright terms: Public domain | W3C validator |