ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4on GIF version

Theorem 4on 6331
Description: Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
4on 4o ∈ On

Proof of Theorem 4on
StepHypRef Expression
1 df-4o 6322 . 2 4o = suc 3o
2 3on 6330 . . 3 3o ∈ On
32onsuci 4438 . 2 suc 3o ∈ On
41, 3eqeltri 2213 1 4o ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 1481  Oncon0 4291  suc csuc 4293  3oc3o 6314  4oc4o 6315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-uni 3743  df-tr 4033  df-iord 4294  df-on 4296  df-suc 4299  df-1o 6319  df-2o 6320  df-3o 6321  df-4o 6322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator