ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4on GIF version

Theorem 4on 6527
Description: Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
4on 4o ∈ On

Proof of Theorem 4on
StepHypRef Expression
1 df-4o 6518 . 2 4o = suc 3o
2 3on 6526 . . 3 3o ∈ On
32onsuci 4572 . 2 suc 3o ∈ On
41, 3eqeltri 2279 1 4o ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2177  Oncon0 4418  suc csuc 4420  3oc3o 6510  4oc4o 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-1o 6515  df-2o 6516  df-3o 6517  df-4o 6518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator