![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsuci | GIF version |
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 4534 and onsucb 4536. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onsuci | ⊢ suc 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onsuc 4534 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Oncon0 4395 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 |
This theorem is referenced by: ordtri2orexmid 4556 onsucsssucexmid 4560 ordsoexmid 4595 ordtri2or2exmid 4604 ontri2orexmidim 4605 tfr0dm 6377 1on 6478 2on 6480 3on 6482 4on 6483 onntri35 7299 onntri45 7303 prarloclemarch2 7481 |
Copyright terms: Public domain | W3C validator |