| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsuci | GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 4557 and onsucb 4559. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| onssi.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onsuci | ⊢ suc 𝐴 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onsuc 4557 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Oncon0 4418 suc csuc 4420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: ordtri2orexmid 4579 onsucsssucexmid 4583 ordsoexmid 4618 ordtri2or2exmid 4627 ontri2orexmidim 4628 tfr0dm 6421 1on 6522 2on 6524 3on 6526 4on 6527 onntri35 7368 onntri45 7372 prarloclemarch2 7552 |
| Copyright terms: Public domain | W3C validator |