![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ssom | GIF version |
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.) |
Ref | Expression |
---|---|
2ssom | ⊢ 2o ⊆ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 6574 | . 2 ⊢ 2o ∈ ω | |
2 | elomssom 4637 | . 2 ⊢ (2o ∈ ω → 2o ⊆ ω) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 2o ⊆ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ⊆ wss 3153 ωcom 4622 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-1o 6469 df-2o 6470 |
This theorem is referenced by: nninfwlporlemd 7231 nninfwlporlem 7232 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 nninfctlemfo 12177 bj-charfunbi 15303 |
Copyright terms: Public domain | W3C validator |