Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2ssom GIF version

Theorem 2ssom 13644
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
Assertion
Ref Expression
2ssom 2o ⊆ ω

Proof of Theorem 2ssom
StepHypRef Expression
1 2onn 6485 . 2 2o ∈ ω
2 elomssom 4581 . 2 (2o ∈ ω → 2o ⊆ ω)
31, 2ax-mp 5 1 2o ⊆ ω
Colors of variables: wff set class
Syntax hints:  wcel 2136  wss 3115  ωcom 4566  2oc2o 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-iinf 4564
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-uni 3789  df-int 3824  df-suc 4348  df-iom 4567  df-1o 6380  df-2o 6381
This theorem is referenced by:  bj-charfunbi  13653
  Copyright terms: Public domain W3C validator