ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ssom GIF version

Theorem 2ssom 6525
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
Assertion
Ref Expression
2ssom 2o ⊆ ω

Proof of Theorem 2ssom
StepHypRef Expression
1 2onn 6522 . 2 2o ∈ ω
2 elomssom 4605 . 2 (2o ∈ ω → 2o ⊆ ω)
31, 2ax-mp 5 1 2o ⊆ ω
Colors of variables: wff set class
Syntax hints:  wcel 2148  wss 3130  ωcom 4590  2oc2o 6411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-suc 4372  df-iom 4591  df-1o 6417  df-2o 6418
This theorem is referenced by:  nninfwlporlemd  7170  nninfwlporlem  7171  nninfwlpoimlemg  7173  nninfwlpoimlemginf  7174  bj-charfunbi  14566
  Copyright terms: Public domain W3C validator