![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ssom | GIF version |
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.) |
Ref | Expression |
---|---|
2ssom | ⊢ 2o ⊆ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 6539 | . 2 ⊢ 2o ∈ ω | |
2 | elomssom 4618 | . 2 ⊢ (2o ∈ ω → 2o ⊆ ω) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 2o ⊆ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 ⊆ wss 3143 ωcom 4603 2oc2o 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-iinf 4601 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-uni 3824 df-int 3859 df-suc 4385 df-iom 4604 df-1o 6434 df-2o 6435 |
This theorem is referenced by: nninfwlporlemd 7187 nninfwlporlem 7188 nninfwlpoimlemg 7190 nninfwlpoimlemginf 7191 bj-charfunbi 14946 |
Copyright terms: Public domain | W3C validator |