Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2ssom | GIF version |
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.) |
Ref | Expression |
---|---|
2ssom | ⊢ 2o ⊆ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 6485 | . 2 ⊢ 2o ∈ ω | |
2 | elomssom 4581 | . 2 ⊢ (2o ∈ ω → 2o ⊆ ω) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 2o ⊆ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ⊆ wss 3115 ωcom 4566 2oc2o 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-iinf 4564 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-uni 3789 df-int 3824 df-suc 4348 df-iom 4567 df-1o 6380 df-2o 6381 |
This theorem is referenced by: bj-charfunbi 13653 |
Copyright terms: Public domain | W3C validator |