ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ssom GIF version

Theorem 2ssom 6633
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
Assertion
Ref Expression
2ssom 2o ⊆ ω

Proof of Theorem 2ssom
StepHypRef Expression
1 2onn 6630 . 2 2o ∈ ω
2 elomssom 4671 . 2 (2o ∈ ω → 2o ⊆ ω)
31, 2ax-mp 5 1 2o ⊆ ω
Colors of variables: wff set class
Syntax hints:  wcel 2178  wss 3174  ωcom 4656  2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-1o 6525  df-2o 6526
This theorem is referenced by:  nninfwlporlemd  7300  nninfwlporlem  7301  nninfwlpoimlemg  7303  nninfwlpoimlemginf  7304  nninfctlemfo  12476  bj-charfunbi  15946  2omap  16132
  Copyright terms: Public domain W3C validator