| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ssom | GIF version | ||
| Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| 2ssom | ⊢ 2o ⊆ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 6630 | . 2 ⊢ 2o ∈ ω | |
| 2 | elomssom 4671 | . 2 ⊢ (2o ∈ ω → 2o ⊆ ω) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 2o ⊆ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 ⊆ wss 3174 ωcom 4656 2oc2o 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: nninfwlporlemd 7300 nninfwlporlem 7301 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 nninfctlemfo 12476 bj-charfunbi 15946 2omap 16132 |
| Copyright terms: Public domain | W3C validator |