ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ssom GIF version

Theorem 2ssom 6582
Description: The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
Assertion
Ref Expression
2ssom 2o ⊆ ω

Proof of Theorem 2ssom
StepHypRef Expression
1 2onn 6579 . 2 2o ∈ ω
2 elomssom 4641 . 2 (2o ∈ ω → 2o ⊆ ω)
31, 2ax-mp 5 1 2o ⊆ ω
Colors of variables: wff set class
Syntax hints:  wcel 2167  wss 3157  ωcom 4626  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-1o 6474  df-2o 6475
This theorem is referenced by:  nninfwlporlemd  7238  nninfwlporlem  7239  nninfwlpoimlemg  7241  nninfwlpoimlemginf  7242  nninfctlemfo  12207  bj-charfunbi  15457
  Copyright terms: Public domain W3C validator