| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6pos | GIF version | ||
| Description: The number 6 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6pos | ⊢ 0 < 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9135 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 1re 8091 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 5pos 9156 | . . 3 ⊢ 0 < 5 | |
| 4 | 0lt1 8219 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8584 | . 2 ⊢ 0 < (5 + 1) |
| 6 | df-6 9119 | . 2 ⊢ 6 = (5 + 1) | |
| 7 | 5, 6 | breqtrri 4078 | 1 ⊢ 0 < 6 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4051 (class class class)co 5957 0cc0 7945 1c1 7946 + caddc 7948 < clt 8127 5c5 9110 6c6 9111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 |
| This theorem is referenced by: 7pos 9158 8th4div3 9276 halfpm6th 9277 5recm6rec 9667 efi4p 12103 resin4p 12104 recos4p 12105 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 sincos6thpi 15389 pigt3 15391 |
| Copyright terms: Public domain | W3C validator |