ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4cn GIF version

Theorem 4cn 9028
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
4cn 4 ∈ ℂ

Proof of Theorem 4cn
StepHypRef Expression
1 4re 9027 . 2 4 ∈ ℝ
21recni 8000 1 4 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2160  cc 7840  4c4 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-2 9009  df-3 9010  df-4 9011
This theorem is referenced by:  5m1e4  9072  4p2e6  9093  4p3e7  9094  4p4e8  9095  4t2e8  9108  4d2e2  9110  8th4div3  9169  div4p1lem1div2  9203  5p5e10  9485  4t4e16  9513  6t5e30  9521  fzo0to42pr  10252  fldiv4p1lem1div2  10338  sq4e2t8  10652  sqoddm1div8  10708  4bc3eq4  10788  4bc2eq6  10789  resqrexlemover  11054  resqrexlemcalc1  11058  resqrexlemcalc3  11060  cos2bnd  11803  flodddiv4  11974  6gcd4e2  12031  6lcm4e12  12122  pythagtriplem1  12300  dveflem  14664  sincosq4sgn  14727  cosq23lt0  14731  sincos6thpi  14740  2lgsoddprmlem2  14932  2lgsoddprmlem3c  14935  2lgsoddprmlem3d  14936  ex-exp  14957  ex-fac  14958  ex-bc  14959
  Copyright terms: Public domain W3C validator