| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | GIF version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn | ⊢ 4 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9113 | . 2 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 8084 | 1 ⊢ 4 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ℂcc 7923 4c4 9089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 df-3 9096 df-4 9097 |
| This theorem is referenced by: 5m1e4 9158 4p2e6 9180 4p3e7 9181 4p4e8 9182 4t2e8 9195 4d2e2 9197 8th4div3 9256 div4p1lem1div2 9291 5p5e10 9574 4t4e16 9602 6t5e30 9610 fzo0to42pr 10349 fldiv4p1lem1div2 10448 sq4e2t8 10782 sqoddm1div8 10838 4bc3eq4 10918 4bc2eq6 10919 resqrexlemover 11321 resqrexlemcalc1 11325 resqrexlemcalc3 11327 cos2bnd 12071 flodddiv4 12247 6gcd4e2 12316 6lcm4e12 12409 pythagtriplem1 12588 2exp11 12759 dveflem 15198 sincosq4sgn 15301 cosq23lt0 15305 sincos6thpi 15314 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 2lgsoddprmlem2 15583 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 ex-exp 15663 ex-fac 15664 ex-bc 15665 |
| Copyright terms: Public domain | W3C validator |