| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | GIF version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn | ⊢ 4 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9148 | . 2 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 8119 | 1 ⊢ 4 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 ℂcc 7958 4c4 9124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-2 9130 df-3 9131 df-4 9132 |
| This theorem is referenced by: 5m1e4 9193 4p2e6 9215 4p3e7 9216 4p4e8 9217 4t2e8 9230 4d2e2 9232 8th4div3 9291 div4p1lem1div2 9326 5p5e10 9609 4t4e16 9637 6t5e30 9645 fzo0to42pr 10386 fldiv4p1lem1div2 10485 sq4e2t8 10819 sqoddm1div8 10875 4bc3eq4 10955 4bc2eq6 10956 resqrexlemover 11436 resqrexlemcalc1 11440 resqrexlemcalc3 11442 cos2bnd 12186 flodddiv4 12362 6gcd4e2 12431 6lcm4e12 12524 pythagtriplem1 12703 2exp11 12874 dveflem 15313 sincosq4sgn 15416 cosq23lt0 15420 sincos6thpi 15429 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 2lgsoddprmlem2 15698 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 ex-exp 15863 ex-fac 15864 ex-bc 15865 |
| Copyright terms: Public domain | W3C validator |