| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | GIF version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn | ⊢ 4 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9112 | . 2 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 8083 | 1 ⊢ 4 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℂcc 7922 4c4 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-2 9094 df-3 9095 df-4 9096 |
| This theorem is referenced by: 5m1e4 9157 4p2e6 9179 4p3e7 9180 4p4e8 9181 4t2e8 9194 4d2e2 9196 8th4div3 9255 div4p1lem1div2 9290 5p5e10 9573 4t4e16 9601 6t5e30 9609 fzo0to42pr 10347 fldiv4p1lem1div2 10446 sq4e2t8 10780 sqoddm1div8 10836 4bc3eq4 10916 4bc2eq6 10917 resqrexlemover 11292 resqrexlemcalc1 11296 resqrexlemcalc3 11298 cos2bnd 12042 flodddiv4 12218 6gcd4e2 12287 6lcm4e12 12380 pythagtriplem1 12559 2exp11 12730 dveflem 15169 sincosq4sgn 15272 cosq23lt0 15276 sincos6thpi 15285 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 2lgsoddprmlem2 15554 2lgsoddprmlem3c 15557 2lgsoddprmlem3d 15558 ex-exp 15625 ex-fac 15626 ex-bc 15627 |
| Copyright terms: Public domain | W3C validator |