ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4cn GIF version

Theorem 4cn 8935
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
4cn 4 ∈ ℂ

Proof of Theorem 4cn
StepHypRef Expression
1 4re 8934 . 2 4 ∈ ℝ
21recni 7911 1 4 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2136  cc 7751  4c4 8910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-2 8916  df-3 8917  df-4 8918
This theorem is referenced by:  5m1e4  8979  4p2e6  9000  4p3e7  9001  4p4e8  9002  4t2e8  9015  4d2e2  9017  8th4div3  9076  div4p1lem1div2  9110  5p5e10  9392  4t4e16  9420  6t5e30  9428  fzo0to42pr  10155  fldiv4p1lem1div2  10240  sq4e2t8  10552  sqoddm1div8  10608  4bc3eq4  10686  4bc2eq6  10687  resqrexlemover  10952  resqrexlemcalc1  10956  resqrexlemcalc3  10958  cos2bnd  11701  flodddiv4  11871  6gcd4e2  11928  6lcm4e12  12019  pythagtriplem1  12197  dveflem  13327  sincosq4sgn  13390  cosq23lt0  13394  sincos6thpi  13403  ex-exp  13608  ex-fac  13609  ex-bc  13610
  Copyright terms: Public domain W3C validator