ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4cn GIF version

Theorem 4cn 9068
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
4cn 4 ∈ ℂ

Proof of Theorem 4cn
StepHypRef Expression
1 4re 9067 . 2 4 ∈ ℝ
21recni 8038 1 4 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cc 7877  4c4 9043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9049  df-3 9050  df-4 9051
This theorem is referenced by:  5m1e4  9112  4p2e6  9134  4p3e7  9135  4p4e8  9136  4t2e8  9149  4d2e2  9151  8th4div3  9210  div4p1lem1div2  9245  5p5e10  9527  4t4e16  9555  6t5e30  9563  fzo0to42pr  10296  fldiv4p1lem1div2  10395  sq4e2t8  10729  sqoddm1div8  10785  4bc3eq4  10865  4bc2eq6  10866  resqrexlemover  11175  resqrexlemcalc1  11179  resqrexlemcalc3  11181  cos2bnd  11925  flodddiv4  12101  6gcd4e2  12162  6lcm4e12  12255  pythagtriplem1  12434  2exp11  12605  dveflem  14962  sincosq4sgn  15065  cosq23lt0  15069  sincos6thpi  15078  2lgslem3a  15334  2lgslem3b  15335  2lgslem3c  15336  2lgslem3d  15337  2lgsoddprmlem2  15347  2lgsoddprmlem3c  15350  2lgsoddprmlem3d  15351  ex-exp  15373  ex-fac  15374  ex-bc  15375
  Copyright terms: Public domain W3C validator