| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | GIF version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn | ⊢ 4 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9086 | . 2 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 8057 | 1 ⊢ 4 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 4c4 9062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9068 df-3 9069 df-4 9070 |
| This theorem is referenced by: 5m1e4 9131 4p2e6 9153 4p3e7 9154 4p4e8 9155 4t2e8 9168 4d2e2 9170 8th4div3 9229 div4p1lem1div2 9264 5p5e10 9546 4t4e16 9574 6t5e30 9582 fzo0to42pr 10315 fldiv4p1lem1div2 10414 sq4e2t8 10748 sqoddm1div8 10804 4bc3eq4 10884 4bc2eq6 10885 resqrexlemover 11194 resqrexlemcalc1 11198 resqrexlemcalc3 11200 cos2bnd 11944 flodddiv4 12120 6gcd4e2 12189 6lcm4e12 12282 pythagtriplem1 12461 2exp11 12632 dveflem 15070 sincosq4sgn 15173 cosq23lt0 15177 sincos6thpi 15186 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgsoddprmlem2 15455 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 ex-exp 15481 ex-fac 15482 ex-bc 15483 |
| Copyright terms: Public domain | W3C validator |