| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | GIF version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn | ⊢ 4 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9183 | . 2 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 8154 | 1 ⊢ 4 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 7993 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 5m1e4 9228 4p2e6 9250 4p3e7 9251 4p4e8 9252 4t2e8 9265 4d2e2 9267 8th4div3 9326 div4p1lem1div2 9361 5p5e10 9644 4t4e16 9672 6t5e30 9680 fzo0to42pr 10421 fldiv4p1lem1div2 10520 sq4e2t8 10854 sqoddm1div8 10910 4bc3eq4 10990 4bc2eq6 10991 resqrexlemover 11516 resqrexlemcalc1 11520 resqrexlemcalc3 11522 cos2bnd 12266 flodddiv4 12442 6gcd4e2 12511 6lcm4e12 12604 pythagtriplem1 12783 2exp11 12954 dveflem 15394 sincosq4sgn 15497 cosq23lt0 15501 sincos6thpi 15510 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 2lgsoddprmlem2 15779 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 ex-exp 16049 ex-fac 16050 ex-bc 16051 |
| Copyright terms: Public domain | W3C validator |