ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4cn GIF version

Theorem 4cn 9060
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
4cn 4 ∈ ℂ

Proof of Theorem 4cn
StepHypRef Expression
1 4re 9059 . 2 4 ∈ ℝ
21recni 8031 1 4 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2164  cc 7870  4c4 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-2 9041  df-3 9042  df-4 9043
This theorem is referenced by:  5m1e4  9104  4p2e6  9125  4p3e7  9126  4p4e8  9127  4t2e8  9140  4d2e2  9142  8th4div3  9201  div4p1lem1div2  9236  5p5e10  9518  4t4e16  9546  6t5e30  9554  fzo0to42pr  10287  fldiv4p1lem1div2  10374  sq4e2t8  10708  sqoddm1div8  10764  4bc3eq4  10844  4bc2eq6  10845  resqrexlemover  11154  resqrexlemcalc1  11158  resqrexlemcalc3  11160  cos2bnd  11903  flodddiv4  12075  6gcd4e2  12132  6lcm4e12  12225  pythagtriplem1  12403  dveflem  14872  sincosq4sgn  14964  cosq23lt0  14968  sincos6thpi  14977  2lgsoddprmlem2  15194  2lgsoddprmlem3c  15197  2lgsoddprmlem3d  15198  ex-exp  15219  ex-fac  15220  ex-bc  15221
  Copyright terms: Public domain W3C validator