![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4lt10 | GIF version |
Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
4lt10 | ⊢ 4 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4lt5 9157 | . 2 ⊢ 4 < 5 | |
2 | 5lt10 9582 | . 2 ⊢ 5 < ;10 | |
3 | 4re 9059 | . . 3 ⊢ 4 ∈ ℝ | |
4 | 5re 9061 | . . 3 ⊢ 5 ∈ ℝ | |
5 | 10re 9466 | . . 3 ⊢ ;10 ∈ ℝ | |
6 | 3, 4, 5 | lttri 8124 | . 2 ⊢ ((4 < 5 ∧ 5 < ;10) → 4 < ;10) |
7 | 1, 2, 6 | mp2an 426 | 1 ⊢ 4 < ;10 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4029 0cc0 7872 1c1 7873 < clt 8054 4c4 9035 5c5 9036 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-dec 9449 |
This theorem is referenced by: 3lt10 9584 slotsdifplendx 12827 slotsdifdsndx 12838 slotsdifunifndx 12845 |
Copyright terms: Public domain | W3C validator |