ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4lt10 GIF version

Theorem 4lt10 9424
Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
4lt10 4 < 10

Proof of Theorem 4lt10
StepHypRef Expression
1 4lt5 9002 . 2 4 < 5
2 5lt10 9423 . 2 5 < 10
3 4re 8904 . . 3 4 ∈ ℝ
4 5re 8906 . . 3 5 ∈ ℝ
5 10re 9307 . . 3 10 ∈ ℝ
63, 4, 5lttri 7975 . 2 ((4 < 5 ∧ 5 < 10) → 4 < 10)
71, 2, 6mp2an 423 1 4 < 10
Colors of variables: wff set class
Syntax hints:   class class class wbr 3965  0cc0 7726  1c1 7727   < clt 7906  4c4 8880  5c5 8881  cdc 9289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-xp 4591  df-iota 5134  df-fv 5177  df-ov 5824  df-pnf 7908  df-mnf 7909  df-ltxr 7911  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-5 8889  df-6 8890  df-7 8891  df-8 8892  df-9 8893  df-dec 9290
This theorem is referenced by:  3lt10  9425
  Copyright terms: Public domain W3C validator