Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4lt10 | GIF version |
Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
4lt10 | ⊢ 4 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4lt5 9002 | . 2 ⊢ 4 < 5 | |
2 | 5lt10 9423 | . 2 ⊢ 5 < ;10 | |
3 | 4re 8904 | . . 3 ⊢ 4 ∈ ℝ | |
4 | 5re 8906 | . . 3 ⊢ 5 ∈ ℝ | |
5 | 10re 9307 | . . 3 ⊢ ;10 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7975 | . 2 ⊢ ((4 < 5 ∧ 5 < ;10) → 4 < ;10) |
7 | 1, 2, 6 | mp2an 423 | 1 ⊢ 4 < ;10 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3965 0cc0 7726 1c1 7727 < clt 7906 4c4 8880 5c5 8881 ;cdc 9289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-xp 4591 df-iota 5134 df-fv 5177 df-ov 5824 df-pnf 7908 df-mnf 7909 df-ltxr 7911 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-5 8889 df-6 8890 df-7 8891 df-8 8892 df-9 8893 df-dec 9290 |
This theorem is referenced by: 3lt10 9425 |
Copyright terms: Public domain | W3C validator |