ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5lt10 GIF version

Theorem 5lt10 9408
Description: 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
5lt10 5 < 10

Proof of Theorem 5lt10
StepHypRef Expression
1 5lt6 8991 . 2 5 < 6
2 6lt10 9407 . 2 6 < 10
3 5re 8891 . . 3 5 ∈ ℝ
4 6re 8893 . . 3 6 ∈ ℝ
5 10re 9292 . . 3 10 ∈ ℝ
63, 4, 5lttri 7960 . 2 ((5 < 6 ∧ 6 < 10) → 5 < 10)
71, 2, 6mp2an 423 1 5 < 10
Colors of variables: wff set class
Syntax hints:   class class class wbr 3961  0cc0 7711  1c1 7712   < clt 7891  5c5 8866  6c6 8867  cdc 9274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-xp 4585  df-iota 5128  df-fv 5171  df-ov 5817  df-pnf 7893  df-mnf 7894  df-ltxr 7896  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-dec 9275
This theorem is referenced by:  4lt10  9409
  Copyright terms: Public domain W3C validator