![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt5 | GIF version |
Description: 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
1lt5 | ⊢ 1 < 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt4 9146 | . 2 ⊢ 1 < 4 | |
2 | 4lt5 9147 | . 2 ⊢ 4 < 5 | |
3 | 1re 8008 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 4re 9049 | . . 3 ⊢ 4 ∈ ℝ | |
5 | 5re 9051 | . . 3 ⊢ 5 ∈ ℝ | |
6 | 3, 4, 5 | lttri 8114 | . 2 ⊢ ((1 < 4 ∧ 4 < 5) → 1 < 5) |
7 | 1, 2, 6 | mp2an 426 | 1 ⊢ 1 < 5 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4029 1c1 7863 < clt 8044 4c4 9025 5c5 9026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-pre-lttrn 7976 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4661 df-iota 5207 df-fv 5254 df-ov 5913 df-pnf 8046 df-mnf 8047 df-ltxr 8049 df-2 9031 df-3 9032 df-4 9033 df-5 9034 |
This theorem is referenced by: scandxnbasendx 12758 |
Copyright terms: Public domain | W3C validator |