Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemibacc | GIF version |
Description: Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6276. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} |
tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrlemibacc | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemi1.3 | . 2 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} | |
2 | simpr3 990 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) | |
3 | tfrlemisucfn.1 | . . . . . . . 8 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
4 | tfrlemisucfn.2 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
5 | 4 | ad2antrr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
6 | tfrlemi1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑥 ∈ On) | |
7 | 6 | ad2antrr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑥 ∈ On) |
8 | simplr 520 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑧 ∈ 𝑥) | |
9 | onelon 4344 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑧 ∈ On) |
11 | simpr1 988 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑔 Fn 𝑧) | |
12 | simpr2 989 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑔 ∈ 𝐴) | |
13 | 3, 5, 10, 11, 12 | tfrlemisucaccv 6269 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) |
14 | 2, 13 | eqeltrd 2234 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ℎ ∈ 𝐴) |
15 | 14 | ex 114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
16 | 15 | exlimdv 1799 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
17 | 16 | rexlimdva 2574 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
18 | 17 | abssdv 3202 | . 2 ⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} ⊆ 𝐴) |
19 | 1, 18 | eqsstrid 3174 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 ∀wal 1333 = wceq 1335 ∃wex 1472 ∈ wcel 2128 {cab 2143 ∀wral 2435 ∃wrex 2436 Vcvv 2712 ∪ cun 3100 ⊆ wss 3102 {csn 3560 〈cop 3563 Oncon0 4323 ↾ cres 4587 Fun wfun 5163 Fn wfn 5164 ‘cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-res 4597 df-iota 5134 df-fun 5171 df-fn 5172 df-fv 5177 |
This theorem is referenced by: tfrlemibfn 6272 tfrlemiubacc 6274 |
Copyright terms: Public domain | W3C validator |