Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemibacc | GIF version |
Description: Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6300. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} |
tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrlemibacc | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemi1.3 | . 2 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} | |
2 | simpr3 995 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) | |
3 | tfrlemisucfn.1 | . . . . . . . 8 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
4 | tfrlemisucfn.2 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
5 | 4 | ad2antrr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
6 | tfrlemi1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑥 ∈ On) | |
7 | 6 | ad2antrr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑥 ∈ On) |
8 | simplr 520 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑧 ∈ 𝑥) | |
9 | onelon 4362 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑧 ∈ On) |
11 | simpr1 993 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑔 Fn 𝑧) | |
12 | simpr2 994 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → 𝑔 ∈ 𝐴) | |
13 | 3, 5, 10, 11, 12 | tfrlemisucaccv 6293 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) |
14 | 2, 13 | eqeltrd 2243 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) → ℎ ∈ 𝐴) |
15 | 14 | ex 114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
16 | 15 | exlimdv 1807 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
17 | 16 | rexlimdva 2583 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ℎ ∈ 𝐴)) |
18 | 17 | abssdv 3216 | . 2 ⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} ⊆ 𝐴) |
19 | 1, 18 | eqsstrid 3188 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 {csn 3576 〈cop 3579 Oncon0 4341 ↾ cres 4606 Fun wfun 5182 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfrlemibfn 6296 tfrlemiubacc 6298 |
Copyright terms: Public domain | W3C validator |