![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlemibacc | GIF version |
Description: Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6335. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))} |
tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrlemibacc | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemi1.3 | . 2 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))} | |
2 | simpr3 1005 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩})) | |
3 | tfrlemisucfn.1 | . . . . . . . 8 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
4 | tfrlemisucfn.2 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
5 | 4 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
6 | tfrlemi1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑥 ∈ On) | |
7 | 6 | ad2antrr 488 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → 𝑥 ∈ On) |
8 | simplr 528 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → 𝑧 ∈ 𝑥) | |
9 | onelon 4386 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ On) | |
10 | 7, 8, 9 | syl2anc 411 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → 𝑧 ∈ On) |
11 | simpr1 1003 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → 𝑔 Fn 𝑧) | |
12 | simpr2 1004 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → 𝑔 ∈ 𝐴) | |
13 | 3, 5, 10, 11, 12 | tfrlemisucaccv 6328 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}) ∈ 𝐴) |
14 | 2, 13 | eqeltrd 2254 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑥) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))) → ℎ ∈ 𝐴) |
15 | 14 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩})) → ℎ ∈ 𝐴)) |
16 | 15 | exlimdv 1819 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑥) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩})) → ℎ ∈ 𝐴)) |
17 | 16 | rexlimdva 2594 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩})) → ℎ ∈ 𝐴)) |
18 | 17 | abssdv 3231 | . 2 ⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))} ⊆ 𝐴) |
19 | 1, 18 | eqsstrid 3203 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 Vcvv 2739 ∪ cun 3129 ⊆ wss 3131 {csn 3594 ⟨cop 3597 Oncon0 4365 ↾ cres 4630 Fun wfun 5212 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: tfrlemibfn 6331 tfrlemiubacc 6333 |
Copyright terms: Public domain | W3C validator |