Proof of Theorem modqid
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℚ) |
| 2 | | simplr 528 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐵 ∈ ℚ) |
| 3 | | 0red 8027 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 0 ∈ ℝ) |
| 4 | | qre 9699 |
. . . . 5
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
| 5 | 4 | ad2antrr 488 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℝ) |
| 6 | | qre 9699 |
. . . . 5
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℝ) |
| 7 | 6 | ad2antlr 489 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐵 ∈ ℝ) |
| 8 | | simprl 529 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 0 ≤ 𝐴) |
| 9 | | simprr 531 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 < 𝐵) |
| 10 | 3, 5, 7, 8, 9 | lelttrd 8151 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 0 < 𝐵) |
| 11 | | modqval 10416 |
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 12 | 1, 2, 10, 11 | syl3anc 1249 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 13 | 10 | gt0ne0d 8539 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐵 ≠ 0) |
| 14 | | qdivcl 9717 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) |
| 15 | 1, 2, 13, 14 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℚ) |
| 16 | | qcn 9708 |
. . . . . . . 8
⊢ ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ) |
| 17 | | addlid 8165 |
. . . . . . . . 9
⊢ ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵)) |
| 18 | 17 | fveq2d 5562 |
. . . . . . . 8
⊢ ((𝐴 / 𝐵) ∈ ℂ → (⌊‘(0 +
(𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 19 | 15, 16, 18 | 3syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 20 | | divge0 8900 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| 21 | 5, 8, 7, 10, 20 | syl22anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| 22 | 7 | recnd 8055 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐵 ∈ ℂ) |
| 23 | 22 | mulridd 8043 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · 1) = 𝐵) |
| 24 | 9, 23 | breqtrrd 4061 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 < (𝐵 · 1)) |
| 25 | | 1red 8041 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 1 ∈ ℝ) |
| 26 | | ltdivmul 8903 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ (𝐵 ∈
ℝ ∧ 0 < 𝐵))
→ ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 27 | 5, 25, 7, 10, 26 | syl112anc 1253 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 28 | 24, 27 | mpbird 167 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) < 1) |
| 29 | | 0z 9337 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 30 | | flqbi2 10381 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (𝐴 /
𝐵) ∈ ℚ) →
((⌊‘(0 + (𝐴 /
𝐵))) = 0 ↔ (0 ≤
(𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) |
| 31 | 29, 15, 30 | sylancr 414 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) |
| 32 | 21, 28, 31 | mpbir2and 946 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = 0) |
| 33 | 19, 32 | eqtr3d 2231 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) = 0) |
| 34 | 33 | oveq2d 5938 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = (𝐵 · 0)) |
| 35 | 22 | mul01d 8419 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · 0) = 0) |
| 36 | 34, 35 | eqtrd 2229 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = 0) |
| 37 | 36 | oveq2d 5938 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − 0)) |
| 38 | 5 | recnd 8055 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℂ) |
| 39 | 38 | subid1d 8326 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − 0) = 𝐴) |
| 40 | 37, 39 | eqtrd 2229 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 𝐴) |
| 41 | 12, 40 | eqtrd 2229 |
1
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤
𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |