ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eftlub GIF version

Theorem eftlub 11836
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
eftl.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
eftl.3 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
eftl.4 (𝜑𝑀 ∈ ℕ)
eftl.5 (𝜑𝐴 ∈ ℂ)
eftl.6 (𝜑 → (abs‘𝐴) ≤ 1)
Assertion
Ref Expression
eftlub (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑘,𝑛)

Proof of Theorem eftlub
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4 (𝜑𝐴 ∈ ℂ)
2 eftl.4 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnnn0d 9296 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
54eftlcl 11834 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
61, 3, 5syl2anc 411 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
76abscld 11328 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ∈ ℝ)
81abscld 11328 . . 3 (𝜑 → (abs‘𝐴) ∈ ℝ)
9 eftl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
109reeftlcl 11835 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
118, 3, 10syl2anc 411 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
128, 3reexpcld 10764 . . 3 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℝ)
13 peano2nn0 9283 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
143, 13syl 14 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℕ0)
1514nn0red 9297 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ)
163faccld 10810 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℕ)
1716, 2nnmulcld 9033 . . . 4 (𝜑 → ((!‘𝑀) · 𝑀) ∈ ℕ)
1815, 17nndivred 9034 . . 3 (𝜑 → ((𝑀 + 1) / ((!‘𝑀) · 𝑀)) ∈ ℝ)
1912, 18remulcld 8052 . 2 (𝜑 → (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ)
20 eqid 2193 . . 3 (ℤ𝑀) = (ℤ𝑀)
212nnzd 9441 . . . 4 (𝜑𝑀 ∈ ℤ)
22 eqidd 2194 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
23 eluznn0 9667 . . . . . 6 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
243, 23sylan 283 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
254eftvalcn 11803 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
261, 25sylan 283 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
27 eftcl 11800 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
281, 27sylan 283 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2926, 28eqeltrd 2270 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3024, 29syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
314eftlcvg 11833 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
321, 3, 31syl2anc 411 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3320, 21, 22, 30, 32isumclim2 11568 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘))
34 eqidd 2194 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐺𝑘))
358recnd 8050 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
369eftvalcn 11803 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3735, 36sylan 283 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
38 reeftcl 11801 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
398, 38sylan 283 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
4037, 39eqeltrd 2270 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4124, 40syldan 282 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4241recnd 8050 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
439eftlcvg 11833 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4435, 3, 43syl2anc 411 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4520, 21, 34, 42, 44isumclim2 11568 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
46 eftabs 11802 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
471, 46sylan 283 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4826fveq2d 5559 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
4947, 48, 373eqtr4rd 2237 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5024, 49syldan 282 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5120, 33, 45, 21, 30, 50iserabs 11621 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
52 nn0uz 9630 . . . 4 0 = (ℤ‘0)
53 0zd 9332 . . . 4 (𝜑 → 0 ∈ ℤ)
542nncnd 8998 . . . . 5 (𝜑𝑀 ∈ ℂ)
55 nn0cn 9253 . . . . 5 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
56 nn0ex 9249 . . . . . . . 8 0 ∈ V
5756mptex 5785 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) ∈ V
589, 57eqeltri 2266 . . . . . 6 𝐺 ∈ V
5958shftval4 10975 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6054, 55, 59syl2an 289 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6135adantr 276 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
62 nn0addcl 9278 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
633, 62sylan 283 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
649eftvalcn 11803 . . . . . 6 (((abs‘𝐴) ∈ ℂ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
6561, 63, 64syl2anc 411 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
668adantr 276 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
67 reeftcl 11801 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6866, 63, 67syl2anc 411 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6965, 68eqeltrd 2270 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ∈ ℝ)
70 simpr 110 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
7112, 16nndivred 9034 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
7271adantr 276 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
732peano2nnd 8999 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℕ)
7473nnrecred 9031 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
75 reexpcl 10630 . . . . . . 7 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
7674, 75sylan 283 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
7772, 76remulcld 8052 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ)
78 oveq2 5927 . . . . . . 7 (𝑛 = 𝑗 → ((1 / (𝑀 + 1))↑𝑛) = ((1 / (𝑀 + 1))↑𝑗))
7978oveq2d 5935 . . . . . 6 (𝑛 = 𝑗 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
80 eftl.3 . . . . . 6 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
8179, 80fvmptg 5634 . . . . 5 ((𝑗 ∈ ℕ0 ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
8270, 77, 81syl2anc 411 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
8366, 63reexpcld 10764 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ)
8412adantr 276 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℝ)
8563faccld 10810 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8685nnred 8997 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℝ)
8786, 77remulcld 8052 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))) ∈ ℝ)
883adantr 276 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑀 ∈ ℕ0)
89 uzid 9609 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
9021, 89syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
91 uzaddcl 9654 . . . . . . . . 9 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
9290, 91sylan 283 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
931absge0d 11331 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐴))
9493adantr 276 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
95 eftl.6 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ≤ 1)
9695adantr 276 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ≤ 1)
9766, 88, 92, 94, 96leexp2rd 10777 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((abs‘𝐴)↑𝑀))
9816adantr 276 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℕ)
99 nnexpcl 10626 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10073, 99sylan 283 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10198, 100nnmulcld 9033 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℕ)
102101nnred 8997 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ)
1038, 3, 93expge0d 10765 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((abs‘𝐴)↑𝑀))
10412, 103jca 306 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
105104adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
106 faclbnd6 10818 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
1073, 106sylan 283 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
108 lemul1a 8879 . . . . . . . . . 10 (((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ ∧ (!‘(𝑀 + 𝑗)) ∈ ℝ ∧ (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀))) ∧ ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗))) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
109102, 86, 105, 107, 108syl31anc 1252 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
11086, 84remulcld 8052 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ∈ ℝ)
111101nnrpd 9763 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ+)
11284, 110, 111lemuldiv2d 9816 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ↔ ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
113109, 112mpbid 147 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
11485nncnd 8998 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℂ)
11512recnd 8050 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℂ)
116115adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℂ)
117101nncnd 8998 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℂ)
118101nnap0d 9030 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) # 0)
119114, 116, 117, 118divassapd 8847 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
12073nncnd 8998 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ ℂ)
121120adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
12273adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
123122nnap0d 9030 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) # 0)
124 nn0z 9340 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
125124adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
126121, 123, 125exprecapd 10755 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) = (1 / ((𝑀 + 1)↑𝑗)))
127126oveq2d 5935 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
12871recnd 8050 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
129128adantr 276 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
130100nncnd 8998 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℂ)
131100nnap0d 9030 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) # 0)
132129, 130, 131divrecapd 8814 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
13316nncnd 8998 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ∈ ℂ)
134133adantr 276 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℂ)
13598nnap0d 9030 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) # 0)
136116, 134, 130, 135, 131divdivap1d 8843 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
137127, 132, 1363eqtr2rd 2233 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
138137oveq2d 5935 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
139119, 138eqtrd 2226 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
140113, 139breqtrd 4056 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14183, 84, 87, 97, 140letrd 8145 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14285nngt0d 9028 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 < (!‘(𝑀 + 𝑗)))
143 ledivmul 8898 . . . . . . 7 ((((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ ∧ ((!‘(𝑀 + 𝑗)) ∈ ℝ ∧ 0 < (!‘(𝑀 + 𝑗)))) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
14483, 77, 86, 142, 143syl112anc 1253 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
145141, 144mpbird 167 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14665, 145eqbrtrd 4052 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14758a1i 9 . . . . . 6 (𝜑𝐺 ∈ V)
14821znegcld 9444 . . . . . 6 (𝜑 → -𝑀 ∈ ℤ)
149 0cn 8013 . . . . . . . . . . . . 13 0 ∈ ℂ
150 subneg 8270 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 − -𝑀) = (0 + 𝑀))
151149, 150mpan 424 . . . . . . . . . . . 12 (𝑀 ∈ ℂ → (0 − -𝑀) = (0 + 𝑀))
152 addlid 8160 . . . . . . . . . . . 12 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
153151, 152eqtrd 2226 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 − -𝑀) = 𝑀)
15454, 153syl 14 . . . . . . . . . 10 (𝜑 → (0 − -𝑀) = 𝑀)
155154fveq2d 5559 . . . . . . . . 9 (𝜑 → (ℤ‘(0 − -𝑀)) = (ℤ𝑀))
156155eleq2d 2263 . . . . . . . 8 (𝜑 → (𝑘 ∈ (ℤ‘(0 − -𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
157156pm5.32i 454 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(0 − -𝑀))) ↔ (𝜑𝑘 ∈ (ℤ𝑀)))
158157, 41sylbi 121 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 − -𝑀))) → (𝐺𝑘) ∈ ℝ)
159 readdcl 8000 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
160159adantl 277 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
161147, 53, 148, 158, 160seq3shft 10985 . . . . 5 (𝜑 → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
162 seqex 10523 . . . . . . 7 seq(0 − -𝑀)( + , 𝐺) ∈ V
16354negcld 8319 . . . . . . 7 (𝜑 → -𝑀 ∈ ℂ)
164 ovshftex 10966 . . . . . . 7 ((seq(0 − -𝑀)( + , 𝐺) ∈ V ∧ -𝑀 ∈ ℂ) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V)
165162, 163, 164sylancr 414 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V)
16620, 21, 34, 41, 44isumrecl 11575 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
167154seqeq1d 10527 . . . . . . . 8 (𝜑 → seq(0 − -𝑀)( + , 𝐺) = seq𝑀( + , 𝐺))
168167, 45eqbrtrd 4052 . . . . . . 7 (𝜑 → seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
169 climshft 11450 . . . . . . . 8 ((-𝑀 ∈ ℤ ∧ seq(0 − -𝑀)( + , 𝐺) ∈ V) → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
170148, 162, 169sylancl 413 . . . . . . 7 (𝜑 → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
171168, 170mpbird 167 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
172 breldmg 4869 . . . . . 6 (((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V ∧ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ ∧ (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
173165, 166, 171, 172syl3anc 1249 . . . . 5 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
174161, 173eqeltrd 2270 . . . 4 (𝜑 → seq0( + , (𝐺 shift -𝑀)) ∈ dom ⇝ )
175 seqex 10523 . . . . . 6 seq0( + , 𝐻) ∈ V
176175a1i 9 . . . . 5 (𝜑 → seq0( + , 𝐻) ∈ V)
1772nnge1d 9027 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
178 1nn 8995 . . . . . . . . . . 11 1 ∈ ℕ
179 nnleltp1 9379 . . . . . . . . . . 11 ((1 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
180178, 2, 179sylancr 414 . . . . . . . . . 10 (𝜑 → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
181177, 180mpbid 147 . . . . . . . . 9 (𝜑 → 1 < (𝑀 + 1))
18214nn0ge0d 9299 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑀 + 1))
18315, 182absidd 11314 . . . . . . . . 9 (𝜑 → (abs‘(𝑀 + 1)) = (𝑀 + 1))
184181, 183breqtrrd 4058 . . . . . . . 8 (𝜑 → 1 < (abs‘(𝑀 + 1)))
18574adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (1 / (𝑀 + 1)) ∈ ℝ)
186185, 70reexpcld 10764 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
187 eqid 2193 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))
18878, 187fvmptg 5634 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
18970, 186, 188syl2anc 411 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
190120, 184, 189georeclim 11659 . . . . . . 7 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))) ⇝ ((𝑀 + 1) / ((𝑀 + 1) − 1)))
19176recnd 8050 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℂ)
192189, 191eqeltrd 2270 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) ∈ ℂ)
193189oveq2d 5935 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
19482, 193eqtr4d 2229 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)))
19552, 53, 128, 190, 192, 194isermulc2 11486 . . . . . 6 (𝜑 → seq0( + , 𝐻) ⇝ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))))
196 ax-1cn 7967 . . . . . . . . . . 11 1 ∈ ℂ
197 pncan 8227 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
19854, 196, 197sylancl 413 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
199198oveq2d 5935 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / ((𝑀 + 1) − 1)) = ((𝑀 + 1) / 𝑀))
200199oveq2d 5935 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
20115, 2nndivred 9034 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℝ)
202201recnd 8050 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℂ)
20316nnap0d 9030 . . . . . . . . 9 (𝜑 → (!‘𝑀) # 0)
204115, 202, 133, 203div23apd 8849 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
205200, 204eqtr4d 2229 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)))
206115, 202, 133, 203divassapd 8847 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))))
2072nnap0d 9030 . . . . . . . . . 10 (𝜑𝑀 # 0)
208120, 54, 133, 207, 203divdivap1d 8843 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / (𝑀 · (!‘𝑀))))
20954, 133mulcomd 8043 . . . . . . . . . 10 (𝜑 → (𝑀 · (!‘𝑀)) = ((!‘𝑀) · 𝑀))
210209oveq2d 5935 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / (𝑀 · (!‘𝑀))) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
211208, 210eqtrd 2226 . . . . . . . 8 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
212211oveq2d 5935 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
213205, 206, 2123eqtrd 2230 . . . . . 6 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
214195, 213breqtrd 4056 . . . . 5 (𝜑 → seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
215 breldmg 4869 . . . . 5 ((seq0( + , 𝐻) ∈ V ∧ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ ∧ seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) → seq0( + , 𝐻) ∈ dom ⇝ )
216176, 19, 214, 215syl3anc 1249 . . . 4 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
21752, 53, 60, 69, 82, 77, 146, 174, 216isumle 11641 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) ≤ Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
218 eqid 2193 . . . . 5 (ℤ‘(0 + 𝑀)) = (ℤ‘(0 + 𝑀))
219 fveq2 5555 . . . . 5 (𝑘 = (𝑀 + 𝑗) → (𝐺𝑘) = (𝐺‘(𝑀 + 𝑗)))
22054addlidd 8171 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
221220fveq2d 5559 . . . . . . . 8 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
222221eleq2d 2263 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘(0 + 𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
223222biimpa 296 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → 𝑘 ∈ (ℤ𝑀))
224223, 42syldan 282 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → (𝐺𝑘) ∈ ℂ)
22552, 218, 219, 21, 53, 224isumshft 11636 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)))
226221sumeq1d 11512 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
227225, 226eqtr3d 2228 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
22877recnd 8050 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℂ)
22952, 53, 82, 228, 214isumclim 11567 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
230217, 227, 2293brtr3d 4061 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
2317, 11, 19, 51, 230letrd 8145 1 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4030  cmpt 4091  dom cdm 4660  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  -cneg 8193   / cdiv 8693  cn 8984  0cn0 9243  cz 9320  cuz 9595  seqcseq 10521  cexp 10612  !cfa 10799   shift cshi 10961  abscabs 11144  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  ef01bndlem  11902  eirraplem  11923  dveflem  14905
  Copyright terms: Public domain W3C validator