ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan GIF version

Theorem addcan 8199
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addcan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem addcan
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnegex2 8198 . . 3 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
213ad2ant1 1020 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
3 oveq2 5926 . . . 4 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)))
4 simprr 531 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + 𝐴) = 0)
54oveq1d 5933 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵))
6 simprl 529 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝑥 ∈ ℂ)
7 simpl1 1002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐴 ∈ ℂ)
8 simpl2 1003 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐵 ∈ ℂ)
96, 7, 8addassd 8042 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵)))
10 addlid 8158 . . . . . . 7 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
118, 10syl 14 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐵) = 𝐵)
125, 9, 113eqtr3d 2234 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐵)) = 𝐵)
134oveq1d 5933 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶))
14 simpl3 1004 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐶 ∈ ℂ)
156, 7, 14addassd 8042 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶)))
16 addlid 8158 . . . . . . 7 (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶)
1714, 16syl 14 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐶) = 𝐶)
1813, 15, 173eqtr3d 2234 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐶)) = 𝐶)
1912, 18eqeq12d 2208 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)) ↔ 𝐵 = 𝐶))
203, 19imbitrid 154 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
21 oveq2 5926 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
2220, 21impbid1 142 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
232, 22rexlimddv 2616 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  addcani  8201  addcand  8203  subcan  8274
  Copyright terms: Public domain W3C validator