Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2d | GIF version |
Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid2d | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid2 8058 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: negeu 8110 ltadd2 8338 subge0 8394 sublt0d 8489 un0addcl 9168 lincmb01cmp 9960 modsumfzodifsn 10352 rennim 10966 max0addsup 11183 fsumsplit 11370 sumsplitdc 11395 fisum0diag2 11410 isumsplit 11454 arisum2 11462 efaddlem 11637 eftlub 11653 ef4p 11657 moddvds 11761 gcdaddm 11939 gcdmultipled 11948 bezoutlemb 11955 pcmpt 12295 limcimolemlt 13427 dvcnp2cntop 13457 dvmptcmulcn 13477 dveflem 13481 dvef 13482 sin0pilem1 13496 sin2kpi 13526 cos2kpi 13527 coshalfpim 13538 sinkpi 13562 |
Copyright terms: Public domain | W3C validator |