Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2d | GIF version |
Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid2d | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid2 8070 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 (class class class)co 5865 ℂcc 7784 0cc0 7786 + caddc 7789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-addcom 7886 ax-i2m1 7891 ax-0id 7894 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: negeu 8122 ltadd2 8350 subge0 8406 sublt0d 8501 un0addcl 9182 lincmb01cmp 9974 modsumfzodifsn 10366 rennim 10979 max0addsup 11196 fsumsplit 11383 sumsplitdc 11408 fisum0diag2 11423 isumsplit 11467 arisum2 11475 efaddlem 11650 eftlub 11666 ef4p 11670 moddvds 11774 gcdaddm 11952 gcdmultipled 11961 bezoutlemb 11968 pcmpt 12308 mulgnn0dir 12873 limcimolemlt 13704 dvcnp2cntop 13734 dvmptcmulcn 13754 dveflem 13758 dvef 13759 sin0pilem1 13773 sin2kpi 13803 cos2kpi 13804 coshalfpim 13815 sinkpi 13839 |
Copyright terms: Public domain | W3C validator |