Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2d | GIF version |
Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid2d | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid2 8037 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: negeu 8089 ltadd2 8317 subge0 8373 sublt0d 8468 un0addcl 9147 lincmb01cmp 9939 modsumfzodifsn 10331 rennim 10944 max0addsup 11161 fsumsplit 11348 sumsplitdc 11373 fisum0diag2 11388 isumsplit 11432 arisum2 11440 efaddlem 11615 eftlub 11631 ef4p 11635 moddvds 11739 gcdaddm 11917 gcdmultipled 11926 bezoutlemb 11933 pcmpt 12273 limcimolemlt 13273 dvcnp2cntop 13303 dvmptcmulcn 13323 dveflem 13327 dvef 13328 sin0pilem1 13342 sin2kpi 13372 cos2kpi 13373 coshalfpim 13384 sinkpi 13408 |
Copyright terms: Public domain | W3C validator |