ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdclem GIF version

Theorem sumrbdclem 11174
Description: Lemma for sumrbdc 11176. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrbdclem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdclem
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addid2 7921 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 275 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 7779 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 274 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 eluzelz 9355 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
75, 6syl 14 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
8 isummo.dc . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
9 exmiddc 822 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
108, 9syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
11 iftrue 3480 . . . . . . . . . . . . 13 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1211adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
13 isummo.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2217 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
16 iffalse 3483 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
17 0cn 7778 . . . . . . . . . . . 12 0 ∈ ℂ
1816, 17eqeltrdi 2231 . . . . . . . . . . 11 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1918a1i 9 . . . . . . . . . 10 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2015, 19jaod 707 . . . . . . . . 9 (𝜑 → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2120adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2210, 21mpd 13 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2322ralrimiva 2506 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
24 nfv 1509 . . . . . . . . 9 𝑘 𝑁𝐴
25 nfcsb1v 3036 . . . . . . . . 9 𝑘𝑁 / 𝑘𝐵
26 nfcv 2282 . . . . . . . . 9 𝑘0
2724, 25, 26nfif 3501 . . . . . . . 8 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0)
2827nfel1 2293 . . . . . . 7 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ
29 eleq1 2203 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
30 csbeq1a 3013 . . . . . . . . 9 (𝑘 = 𝑁𝐵 = 𝑁 / 𝑘𝐵)
3129, 30ifbieq1d 3495 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘𝐴, 𝐵, 0) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
3231eleq1d 2209 . . . . . . 7 (𝑘 = 𝑁 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
3328, 32rspc 2784 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
344, 23, 33sylc 62 . . . . 5 (𝜑 → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
3534adantr 274 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
36 nfcv 2282 . . . . 5 𝑘𝑁
37 isummo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
3836, 27, 31, 37fvmptf 5517 . . . 4 ((𝑁 ∈ ℤ ∧ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
397, 35, 38syl2anc 409 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
4039, 35eqeltrd 2217 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
41 elfzelz 9833 . . . 4 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
42 elfzuz 9829 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ𝑀))
4342adantl 275 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ𝑀))
4423ad2antrr 480 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
45 nfv 1509 . . . . . . . 8 𝑘 𝑛𝐴
46 nfcsb1v 3036 . . . . . . . 8 𝑘𝑛 / 𝑘𝐵
4745, 46, 26nfif 3501 . . . . . . 7 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
4847nfel1 2293 . . . . . 6 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ
49 eleq1 2203 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
50 csbeq1a 3013 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
5149, 50ifbieq1d 3495 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5251eleq1d 2209 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5348, 52rspc 2784 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5443, 44, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
55 nfcv 2282 . . . . 5 𝑘𝑛
5655, 47, 51, 37fvmptf 5517 . . . 4 ((𝑛 ∈ ℤ ∧ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5741, 54, 56syl2an2 584 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
58 uznfz 9910 . . . . . . 7 (𝑛 ∈ (ℤ𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1)))
5958con2i 617 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ𝑁))
6059adantl 275 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ𝑁))
61 ssel 3092 . . . . . 6 (𝐴 ⊆ (ℤ𝑁) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6261ad2antlr 481 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6360, 62mtod 653 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
6463iffalsed 3485 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = 0)
6557, 64eqtrd 2173 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
66 eluzelz 9355 . . . 4 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
67 simpr 109 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
6823ad2antrr 480 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
6967, 68, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
7066, 69, 56syl2an2 584 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
7170, 69eqeltrd 2217 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) ∈ ℂ)
72 addcl 7765 . . 3 ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ)
7372adantl 275 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ)
742, 3, 5, 40, 65, 71, 73seq3id 10308 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  csb 3004  wss 3072  ifcif 3475  cmpt 3993  cres 4545  cfv 5127  (class class class)co 5778  cc 7638  0cc0 7640  1c1 7641   + caddc 7643  cmin 7953  cz 9074  cuz 9346  ...cfz 9817  seqcseq 10245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-inn 8741  df-n0 8998  df-z 9075  df-uz 9347  df-fz 9818  df-fzo 9947  df-seqfrec 10246
This theorem is referenced by:  sumrbdc  11176
  Copyright terms: Public domain W3C validator