ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdclem GIF version

Theorem sumrbdclem 10984
Description: Lemma for sumrbdc 10986. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrbdclem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdclem
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addid2 7772 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 273 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 7631 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 272 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 eluzelz 9185 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
75, 6syl 14 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
8 isummo.dc . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
9 exmiddc 788 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
108, 9syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
11 iftrue 3426 . . . . . . . . . . . . 13 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1211adantl 273 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
13 isummo.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2176 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
16 iffalse 3429 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
17 0cn 7630 . . . . . . . . . . . 12 0 ∈ ℂ
1816, 17syl6eqel 2190 . . . . . . . . . . 11 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1918a1i 9 . . . . . . . . . 10 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2015, 19jaod 678 . . . . . . . . 9 (𝜑 → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2120adantr 272 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2210, 21mpd 13 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2322ralrimiva 2464 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
24 nfv 1476 . . . . . . . . 9 𝑘 𝑁𝐴
25 nfcsb1v 2985 . . . . . . . . 9 𝑘𝑁 / 𝑘𝐵
26 nfcv 2240 . . . . . . . . 9 𝑘0
2724, 25, 26nfif 3447 . . . . . . . 8 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0)
2827nfel1 2251 . . . . . . 7 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ
29 eleq1 2162 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
30 csbeq1a 2963 . . . . . . . . 9 (𝑘 = 𝑁𝐵 = 𝑁 / 𝑘𝐵)
3129, 30ifbieq1d 3441 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘𝐴, 𝐵, 0) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
3231eleq1d 2168 . . . . . . 7 (𝑘 = 𝑁 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
3328, 32rspc 2738 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
344, 23, 33sylc 62 . . . . 5 (𝜑 → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
3534adantr 272 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
36 nfcv 2240 . . . . 5 𝑘𝑁
37 isummo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
3836, 27, 31, 37fvmptf 5445 . . . 4 ((𝑁 ∈ ℤ ∧ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
397, 35, 38syl2anc 406 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
4039, 35eqeltrd 2176 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
41 elfzelz 9647 . . . 4 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
42 elfzuz 9643 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ𝑀))
4342adantl 273 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ𝑀))
4423ad2antrr 475 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
45 nfv 1476 . . . . . . . 8 𝑘 𝑛𝐴
46 nfcsb1v 2985 . . . . . . . 8 𝑘𝑛 / 𝑘𝐵
4745, 46, 26nfif 3447 . . . . . . 7 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
4847nfel1 2251 . . . . . 6 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ
49 eleq1 2162 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
50 csbeq1a 2963 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
5149, 50ifbieq1d 3441 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5251eleq1d 2168 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5348, 52rspc 2738 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5443, 44, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
55 nfcv 2240 . . . . 5 𝑘𝑛
5655, 47, 51, 37fvmptf 5445 . . . 4 ((𝑛 ∈ ℤ ∧ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5741, 54, 56syl2an2 564 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
58 uznfz 9724 . . . . . . 7 (𝑛 ∈ (ℤ𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1)))
5958con2i 597 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ𝑁))
6059adantl 273 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ𝑁))
61 ssel 3041 . . . . . 6 (𝐴 ⊆ (ℤ𝑁) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6261ad2antlr 476 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6360, 62mtod 630 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
6463iffalsed 3431 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = 0)
6557, 64eqtrd 2132 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
66 eluzelz 9185 . . . 4 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
67 simpr 109 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
6823ad2antrr 475 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
6967, 68, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
7066, 69, 56syl2an2 564 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
7170, 69eqeltrd 2176 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) ∈ ℂ)
72 addcl 7617 . . 3 ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ)
7372adantl 273 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ)
742, 3, 5, 40, 65, 71, 73seq3id 10122 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 670  DECID wdc 786   = wceq 1299  wcel 1448  wral 2375  csb 2955  wss 3021  ifcif 3421  cmpt 3929  cres 4479  cfv 5059  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   + caddc 7503  cmin 7804  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-fzo 9761  df-seqfrec 10060
This theorem is referenced by:  sumrbdc  10986
  Copyright terms: Public domain W3C validator