| Step | Hyp | Ref
| Expression |
| 1 | | addlid 8165 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
| 2 | 1 | adantl 277 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛) |
| 3 | | 0cnd 8019 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 0 ∈
ℂ) |
| 4 | | isumrb.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | 4 | adantr 276 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | eluzelz 9610 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 7 | 5, 6 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 8 | | isummo.dc |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
| 9 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 11 | | iftrue 3566 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 12 | 11 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 13 | | isummo.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 14 | 12, 13 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 15 | 14 | ex 115 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
| 16 | | iffalse 3569 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
| 17 | | 0cn 8018 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
| 18 | 16, 17 | eqeltrdi 2287 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 19 | 18 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
| 20 | 15, 19 | jaod 718 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
| 21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
| 22 | 10, 21 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 23 | 22 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 24 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑁 ∈ 𝐴 |
| 25 | | nfcsb1v 3117 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑁 / 𝑘⦌𝐵 |
| 26 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑘0 |
| 27 | 24, 25, 26 | nfif 3589 |
. . . . . . . 8
⊢
Ⅎ𝑘if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) |
| 28 | 27 | nfel1 2350 |
. . . . . . 7
⊢
Ⅎ𝑘if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ |
| 29 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) |
| 30 | | csbeq1a 3093 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → 𝐵 = ⦋𝑁 / 𝑘⦌𝐵) |
| 31 | 29, 30 | ifbieq1d 3583 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0)) |
| 32 | 31 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ)) |
| 33 | 28, 32 | rspc 2862 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ → if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ)) |
| 34 | 4, 23, 33 | sylc 62 |
. . . . 5
⊢ (𝜑 → if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 35 | 34 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 36 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑘𝑁 |
| 37 | | isummo.1 |
. . . . 5
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 38 | 36, 27, 31, 37 | fvmptf 5654 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐹‘𝑁) = if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0)) |
| 39 | 7, 35, 38 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) = if(𝑁 ∈ 𝐴, ⦋𝑁 / 𝑘⦌𝐵, 0)) |
| 40 | 39, 35 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ∈ ℂ) |
| 41 | | elfzelz 10100 |
. . . 4
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
| 42 | | elfzuz 10096 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 43 | 42 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 44 | 23 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈
(ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 45 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑛 ∈ 𝐴 |
| 46 | | nfcsb1v 3117 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
| 47 | 45, 46, 26 | nfif 3589 |
. . . . . . 7
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
| 48 | 47 | nfel1 2350 |
. . . . . 6
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ |
| 49 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) |
| 50 | | csbeq1a 3093 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
| 51 | 49, 50 | ifbieq1d 3583 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 52 | 51 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ)) |
| 53 | 48, 52 | rspc 2862 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ)) |
| 54 | 43, 44, 53 | sylc 62 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 55 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑘𝑛 |
| 56 | 55, 47, 51, 37 | fvmptf 5654 |
. . . 4
⊢ ((𝑛 ∈ ℤ ∧ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 57 | 41, 54, 56 | syl2an2 594 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 58 | | uznfz 10178 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1))) |
| 59 | 58 | con2i 628 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ≥‘𝑁)) |
| 60 | 59 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈
(ℤ≥‘𝑁)) |
| 61 | | ssel 3177 |
. . . . . 6
⊢ (𝐴 ⊆
(ℤ≥‘𝑁) → (𝑛 ∈ 𝐴 → 𝑛 ∈ (ℤ≥‘𝑁))) |
| 62 | 61 | ad2antlr 489 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 ∈ 𝐴 → 𝑛 ∈ (ℤ≥‘𝑁))) |
| 63 | 60, 62 | mtod 664 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ 𝐴) |
| 64 | 63 | iffalsed 3571 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = 0) |
| 65 | 57, 64 | eqtrd 2229 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = 0) |
| 66 | | eluzelz 9610 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
| 67 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 68 | 23 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 69 | 67, 68, 53 | sylc 62 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 70 | 66, 69, 56 | syl2an2 594 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 71 | 70, 69 | eqeltrd 2273 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑛) ∈ ℂ) |
| 72 | | addcl 8004 |
. . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ) |
| 73 | 72 | adantl 277 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ) |
| 74 | 2, 3, 5, 40, 65, 71, 73 | seq3id 10617 |
1
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |