ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdclem GIF version

Theorem sumrbdclem 11773
Description: Lemma for sumrbdc 11775. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrbdclem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdclem
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlid 8241 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 8095 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 276 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 eluzelz 9687 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
75, 6syl 14 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
8 isummo.dc . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
9 exmiddc 838 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
108, 9syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
11 iftrue 3580 . . . . . . . . . . . . 13 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1211adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
13 isummo.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2283 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
16 iffalse 3583 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
17 0cn 8094 . . . . . . . . . . . 12 0 ∈ ℂ
1816, 17eqeltrdi 2297 . . . . . . . . . . 11 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1918a1i 9 . . . . . . . . . 10 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2015, 19jaod 719 . . . . . . . . 9 (𝜑 → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2120adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2210, 21mpd 13 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2322ralrimiva 2580 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
24 nfv 1552 . . . . . . . . 9 𝑘 𝑁𝐴
25 nfcsb1v 3130 . . . . . . . . 9 𝑘𝑁 / 𝑘𝐵
26 nfcv 2349 . . . . . . . . 9 𝑘0
2724, 25, 26nfif 3604 . . . . . . . 8 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0)
2827nfel1 2360 . . . . . . 7 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ
29 eleq1 2269 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
30 csbeq1a 3106 . . . . . . . . 9 (𝑘 = 𝑁𝐵 = 𝑁 / 𝑘𝐵)
3129, 30ifbieq1d 3598 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘𝐴, 𝐵, 0) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
3231eleq1d 2275 . . . . . . 7 (𝑘 = 𝑁 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
3328, 32rspc 2875 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
344, 23, 33sylc 62 . . . . 5 (𝜑 → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
3534adantr 276 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
36 nfcv 2349 . . . . 5 𝑘𝑁
37 isummo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
3836, 27, 31, 37fvmptf 5690 . . . 4 ((𝑁 ∈ ℤ ∧ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
397, 35, 38syl2anc 411 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
4039, 35eqeltrd 2283 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
41 elfzelz 10177 . . . 4 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
42 elfzuz 10173 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ𝑀))
4342adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ𝑀))
4423ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
45 nfv 1552 . . . . . . . 8 𝑘 𝑛𝐴
46 nfcsb1v 3130 . . . . . . . 8 𝑘𝑛 / 𝑘𝐵
4745, 46, 26nfif 3604 . . . . . . 7 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
4847nfel1 2360 . . . . . 6 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ
49 eleq1 2269 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
50 csbeq1a 3106 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
5149, 50ifbieq1d 3598 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5251eleq1d 2275 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5348, 52rspc 2875 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5443, 44, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
55 nfcv 2349 . . . . 5 𝑘𝑛
5655, 47, 51, 37fvmptf 5690 . . . 4 ((𝑛 ∈ ℤ ∧ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5741, 54, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
58 uznfz 10255 . . . . . . 7 (𝑛 ∈ (ℤ𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1)))
5958con2i 628 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ𝑁))
6059adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ𝑁))
61 ssel 3191 . . . . . 6 (𝐴 ⊆ (ℤ𝑁) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6261ad2antlr 489 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6360, 62mtod 665 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
6463iffalsed 3585 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = 0)
6557, 64eqtrd 2239 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
66 eluzelz 9687 . . . 4 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
67 simpr 110 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
6823ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
6967, 68, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
7066, 69, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
7170, 69eqeltrd 2283 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) ∈ ℂ)
72 addcl 8080 . . 3 ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ)
7372adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ)
742, 3, 5, 40, 65, 71, 73seq3id 10702 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  csb 3097  wss 3170  ifcif 3575  cmpt 4116  cres 4690  cfv 5285  (class class class)co 5962  cc 7953  0cc0 7955  1c1 7956   + caddc 7958  cmin 8273  cz 9402  cuz 9678  ...cfz 10160  seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-seqfrec 10625
This theorem is referenced by:  sumrbdc  11775
  Copyright terms: Public domain W3C validator