ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdclem GIF version

Theorem sumrbdclem 11353
Description: Lemma for sumrbdc 11355. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrbdclem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdclem
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addid2 8070 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 7925 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 276 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 eluzelz 9510 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
75, 6syl 14 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
8 isummo.dc . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
9 exmiddc 836 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
108, 9syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
11 iftrue 3537 . . . . . . . . . . . . 13 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1211adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
13 isummo.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2252 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
16 iffalse 3540 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
17 0cn 7924 . . . . . . . . . . . 12 0 ∈ ℂ
1816, 17eqeltrdi 2266 . . . . . . . . . . 11 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1918a1i 9 . . . . . . . . . 10 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2015, 19jaod 717 . . . . . . . . 9 (𝜑 → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2120adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘𝐴 ∨ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
2210, 21mpd 13 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2322ralrimiva 2548 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
24 nfv 1526 . . . . . . . . 9 𝑘 𝑁𝐴
25 nfcsb1v 3088 . . . . . . . . 9 𝑘𝑁 / 𝑘𝐵
26 nfcv 2317 . . . . . . . . 9 𝑘0
2724, 25, 26nfif 3560 . . . . . . . 8 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0)
2827nfel1 2328 . . . . . . 7 𝑘if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ
29 eleq1 2238 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
30 csbeq1a 3064 . . . . . . . . 9 (𝑘 = 𝑁𝐵 = 𝑁 / 𝑘𝐵)
3129, 30ifbieq1d 3554 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘𝐴, 𝐵, 0) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
3231eleq1d 2244 . . . . . . 7 (𝑘 = 𝑁 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
3328, 32rspc 2833 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ))
344, 23, 33sylc 62 . . . . 5 (𝜑 → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
3534adantr 276 . . . 4 ((𝜑𝐴 ⊆ (ℤ𝑁)) → if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ)
36 nfcv 2317 . . . . 5 𝑘𝑁
37 isummo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
3836, 27, 31, 37fvmptf 5600 . . . 4 ((𝑁 ∈ ℤ ∧ if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
397, 35, 38syl2anc 411 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) = if(𝑁𝐴, 𝑁 / 𝑘𝐵, 0))
4039, 35eqeltrd 2252 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
41 elfzelz 9995 . . . 4 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
42 elfzuz 9991 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ𝑀))
4342adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ𝑀))
4423ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
45 nfv 1526 . . . . . . . 8 𝑘 𝑛𝐴
46 nfcsb1v 3088 . . . . . . . 8 𝑘𝑛 / 𝑘𝐵
4745, 46, 26nfif 3560 . . . . . . 7 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
4847nfel1 2328 . . . . . 6 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ
49 eleq1 2238 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
50 csbeq1a 3064 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
5149, 50ifbieq1d 3554 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5251eleq1d 2244 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5348, 52rspc 2833 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ))
5443, 44, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
55 nfcv 2317 . . . . 5 𝑘𝑛
5655, 47, 51, 37fvmptf 5600 . . . 4 ((𝑛 ∈ ℤ ∧ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
5741, 54, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
58 uznfz 10073 . . . . . . 7 (𝑛 ∈ (ℤ𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1)))
5958con2i 627 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ𝑁))
6059adantl 277 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ𝑁))
61 ssel 3147 . . . . . 6 (𝐴 ⊆ (ℤ𝑁) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6261ad2antlr 489 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛𝐴𝑛 ∈ (ℤ𝑁)))
6360, 62mtod 663 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
6463iffalsed 3542 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = 0)
6557, 64eqtrd 2208 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
66 eluzelz 9510 . . . 4 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
67 simpr 110 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
6823ad2antrr 488 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
6967, 68, 53sylc 62 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) ∈ ℂ)
7066, 69, 56syl2an2 594 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
7170, 69eqeltrd 2252 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) ∈ ℂ)
72 addcl 7911 . . 3 ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ)
7372adantl 277 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ)
742, 3, 5, 40, 65, 71, 73seq3id 10478 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2146  wral 2453  csb 3055  wss 3127  ifcif 3532  cmpt 4059  cres 4622  cfv 5208  (class class class)co 5865  cc 7784  0cc0 7786  1c1 7787   + caddc 7789  cmin 8102  cz 9226  cuz 9501  ...cfz 9979  seqcseq 10415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980  df-fzo 10113  df-seqfrec 10416
This theorem is referenced by:  sumrbdc  11355
  Copyright terms: Public domain W3C validator