ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdid GIF version

Theorem gcdid 11469
Description: The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdid (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcdid
StepHypRef Expression
1 1z 8932 . . 3 1 ∈ ℤ
2 0z 8917 . . 3 0 ∈ ℤ
3 gcdaddm 11467 . . 3 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁))))
41, 2, 3mp3an13 1274 . 2 (𝑁 ∈ ℤ → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁))))
5 gcdid0 11463 . 2 (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁))
6 zcn 8911 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 mulid2 7636 . . . . . 6 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
87oveq2d 5722 . . . . 5 (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = (0 + 𝑁))
9 addid2 7772 . . . . 5 (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁)
108, 9eqtrd 2132 . . . 4 (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = 𝑁)
116, 10syl 14 . . 3 (𝑁 ∈ ℤ → (0 + (1 · 𝑁)) = 𝑁)
1211oveq2d 5722 . 2 (𝑁 ∈ ℤ → (𝑁 gcd (0 + (1 · 𝑁))) = (𝑁 gcd 𝑁))
134, 5, 123eqtr3rd 2141 1 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  cfv 5059  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   + caddc 7503   · cmul 7505  cz 8906  abscabs 10609   gcd cgcd 11430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-dvds 11289  df-gcd 11431
This theorem is referenced by:  6gcd4e2  11476  gcdmultiple  11501  lcmid  11554  lcmgcdeq  11557  3lcm2e6woprm  11560  phibndlem  11684  ex-gcd  12546
  Copyright terms: Public domain W3C validator