ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo0to3tp GIF version

Theorem fzo0to3tp 10412
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Assertion
Ref Expression
fzo0to3tp (0..^3) = {0, 1, 2}

Proof of Theorem fzo0to3tp
StepHypRef Expression
1 3z 9463 . . 3 3 ∈ ℤ
2 fzoval 10332 . . 3 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
31, 2ax-mp 5 . 2 (0..^3) = (0...(3 − 1))
4 3m1e2 9218 . . . 4 (3 − 1) = 2
5 2cn 9169 . . . . 5 2 ∈ ℂ
65addlidi 8277 . . . 4 (0 + 2) = 2
74, 6eqtr4i 2253 . . 3 (3 − 1) = (0 + 2)
87oveq2i 6005 . 2 (0...(3 − 1)) = (0...(0 + 2))
9 0z 9445 . . 3 0 ∈ ℤ
10 fztp 10262 . . . 4 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
11 eqidd 2230 . . . . 5 (0 ∈ ℤ → 0 = 0)
12 0p1e1 9212 . . . . . 6 (0 + 1) = 1
1312a1i 9 . . . . 5 (0 ∈ ℤ → (0 + 1) = 1)
146a1i 9 . . . . 5 (0 ∈ ℤ → (0 + 2) = 2)
1511, 13, 14tpeq123d 3758 . . . 4 (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2})
1610, 15eqtrd 2262 . . 3 (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2})
179, 16ax-mp 5 . 2 (0...(0 + 2)) = {0, 1, 2}
183, 8, 173eqtri 2254 1 (0..^3) = {0, 1, 2}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  {ctp 3668  (class class class)co 5994  0cc0 7987  1c1 7988   + caddc 7990  cmin 8305  2c2 9149  3c3 9150  cz 9434  ...cfz 10192  ..^cfzo 10326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator