![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzo0to3tp | GIF version |
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to3tp | ⊢ (0..^3) = {0, 1, 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3z 8779 | . . 3 ⊢ 3 ∈ ℤ | |
2 | fzoval 9559 | . . 3 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (0..^3) = (0...(3 − 1)) |
4 | 3m1e2 8542 | . . . 4 ⊢ (3 − 1) = 2 | |
5 | 2cn 8493 | . . . . 5 ⊢ 2 ∈ ℂ | |
6 | 5 | addid2i 7625 | . . . 4 ⊢ (0 + 2) = 2 |
7 | 4, 6 | eqtr4i 2111 | . . 3 ⊢ (3 − 1) = (0 + 2) |
8 | 7 | oveq2i 5663 | . 2 ⊢ (0...(3 − 1)) = (0...(0 + 2)) |
9 | 0z 8761 | . . 3 ⊢ 0 ∈ ℤ | |
10 | fztp 9492 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
11 | eqidd 2089 | . . . . 5 ⊢ (0 ∈ ℤ → 0 = 0) | |
12 | 0p1e1 8536 | . . . . . 6 ⊢ (0 + 1) = 1 | |
13 | 12 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 1) = 1) |
14 | 6 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 2) = 2) |
15 | 11, 13, 14 | tpeq123d 3534 | . . . 4 ⊢ (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
16 | 10, 15 | eqtrd 2120 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2}) |
17 | 9, 16 | ax-mp 7 | . 2 ⊢ (0...(0 + 2)) = {0, 1, 2} |
18 | 3, 8, 17 | 3eqtri 2112 | 1 ⊢ (0..^3) = {0, 1, 2} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 {ctp 3448 (class class class)co 5652 0cc0 7350 1c1 7351 + caddc 7353 − cmin 7653 2c2 8473 3c3 8474 ℤcz 8750 ...cfz 9424 ..^cfzo 9553 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-addcom 7445 ax-addass 7447 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-0id 7453 ax-rnegex 7454 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-tp 3454 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-inn 8423 df-2 8481 df-3 8482 df-n0 8674 df-z 8751 df-uz 9020 df-fz 9425 df-fzo 9554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |