| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0to3tp | GIF version | ||
| Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to3tp | ⊢ (0..^3) = {0, 1, 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z 9416 | . . 3 ⊢ 3 ∈ ℤ | |
| 2 | fzoval 10285 | . . 3 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (0..^3) = (0...(3 − 1)) |
| 4 | 3m1e2 9171 | . . . 4 ⊢ (3 − 1) = 2 | |
| 5 | 2cn 9122 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 6 | 5 | addlidi 8230 | . . . 4 ⊢ (0 + 2) = 2 |
| 7 | 4, 6 | eqtr4i 2230 | . . 3 ⊢ (3 − 1) = (0 + 2) |
| 8 | 7 | oveq2i 5967 | . 2 ⊢ (0...(3 − 1)) = (0...(0 + 2)) |
| 9 | 0z 9398 | . . 3 ⊢ 0 ∈ ℤ | |
| 10 | fztp 10215 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
| 11 | eqidd 2207 | . . . . 5 ⊢ (0 ∈ ℤ → 0 = 0) | |
| 12 | 0p1e1 9165 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 1) = 1) |
| 14 | 6 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 2) = 2) |
| 15 | 11, 13, 14 | tpeq123d 3729 | . . . 4 ⊢ (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
| 16 | 10, 15 | eqtrd 2239 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2}) |
| 17 | 9, 16 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, 1, 2} |
| 18 | 3, 8, 17 | 3eqtri 2231 | 1 ⊢ (0..^3) = {0, 1, 2} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {ctp 3639 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 − cmin 8258 2c2 9102 3c3 9103 ℤcz 9387 ...cfz 10145 ..^cfzo 10279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-tp 3645 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-2 9110 df-3 9111 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |