| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0to3tp | GIF version | ||
| Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to3tp | ⊢ (0..^3) = {0, 1, 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z 9483 | . . 3 ⊢ 3 ∈ ℤ | |
| 2 | fzoval 10352 | . . 3 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (0..^3) = (0...(3 − 1)) |
| 4 | 3m1e2 9238 | . . . 4 ⊢ (3 − 1) = 2 | |
| 5 | 2cn 9189 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 6 | 5 | addlidi 8297 | . . . 4 ⊢ (0 + 2) = 2 |
| 7 | 4, 6 | eqtr4i 2253 | . . 3 ⊢ (3 − 1) = (0 + 2) |
| 8 | 7 | oveq2i 6018 | . 2 ⊢ (0...(3 − 1)) = (0...(0 + 2)) |
| 9 | 0z 9465 | . . 3 ⊢ 0 ∈ ℤ | |
| 10 | fztp 10282 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
| 11 | eqidd 2230 | . . . . 5 ⊢ (0 ∈ ℤ → 0 = 0) | |
| 12 | 0p1e1 9232 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 1) = 1) |
| 14 | 6 | a1i 9 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 2) = 2) |
| 15 | 11, 13, 14 | tpeq123d 3758 | . . . 4 ⊢ (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
| 16 | 10, 15 | eqtrd 2262 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2}) |
| 17 | 9, 16 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, 1, 2} |
| 18 | 3, 8, 17 | 3eqtri 2254 | 1 ⊢ (0..^3) = {0, 1, 2} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {ctp 3668 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 − cmin 8325 2c2 9169 3c3 9170 ℤcz 9454 ...cfz 10212 ..^cfzo 10346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |