| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinq34lt0t | GIF version | ||
| Description: The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
| Ref | Expression |
|---|---|
| sinq34lt0t | ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 10069 | . . . . . 6 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℝ) | |
| 2 | picn 15374 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
| 3 | 2 | addlidi 8250 | . . . . . . . . . 10 ⊢ (0 + π) = π |
| 4 | 3 | eqcomi 2211 | . . . . . . . . 9 ⊢ π = (0 + π) |
| 5 | 2 | 2timesi 9201 | . . . . . . . . 9 ⊢ (2 · π) = (π + π) |
| 6 | 4, 5 | oveq12i 5979 | . . . . . . . 8 ⊢ (π(,)(2 · π)) = ((0 + π)(,)(π + π)) |
| 7 | 6 | eleq2i 2274 | . . . . . . 7 ⊢ (𝐴 ∈ (π(,)(2 · π)) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))) |
| 8 | pire 15373 | . . . . . . . 8 ⊢ π ∈ ℝ | |
| 9 | 0re 8107 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 10 | iooshf 10109 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ π ∈ ℝ) ∧ (0 ∈ ℝ ∧ π ∈ ℝ)) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) | |
| 11 | 9, 8, 10 | mpanr12 439 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
| 12 | 8, 11 | mpan2 425 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
| 13 | 7, 12 | bitr4id 199 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
| 14 | 1, 13 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
| 15 | 14 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 − π) ∈ (0(,)π)) |
| 16 | sinq12gt0 15417 | . . . 4 ⊢ ((𝐴 − π) ∈ (0(,)π) → 0 < (sin‘(𝐴 − π))) | |
| 17 | 15, 16 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < (sin‘(𝐴 − π))) |
| 18 | 1 | recnd 8136 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℂ) |
| 19 | sinmpi 15402 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘(𝐴 − π)) = -(sin‘𝐴)) |
| 21 | 17, 20 | breqtrd 4085 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < -(sin‘𝐴)) |
| 22 | 1 | resincld 12149 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) ∈ ℝ) |
| 23 | 22 | lt0neg1d 8623 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → ((sin‘𝐴) < 0 ↔ 0 < -(sin‘𝐴))) |
| 24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 ℝcr 7959 0cc0 7960 + caddc 7963 · cmul 7965 < clt 8142 − cmin 8278 -cneg 8279 2c2 9122 (,)cioo 10045 sincsin 12070 πcpi 12073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: cosq23lt0 15420 |
| Copyright terms: Public domain | W3C validator |