ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq34lt0t GIF version

Theorem sinq34lt0t 15303
Description: The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
sinq34lt0t (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0)

Proof of Theorem sinq34lt0t
StepHypRef Expression
1 elioore 10034 . . . . . 6 (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℝ)
2 picn 15259 . . . . . . . . . . 11 π ∈ ℂ
32addlidi 8215 . . . . . . . . . 10 (0 + π) = π
43eqcomi 2209 . . . . . . . . 9 π = (0 + π)
522timesi 9166 . . . . . . . . 9 (2 · π) = (π + π)
64, 5oveq12i 5956 . . . . . . . 8 (π(,)(2 · π)) = ((0 + π)(,)(π + π))
76eleq2i 2272 . . . . . . 7 (𝐴 ∈ (π(,)(2 · π)) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))
8 pire 15258 . . . . . . . 8 π ∈ ℝ
9 0re 8072 . . . . . . . . 9 0 ∈ ℝ
10 iooshf 10074 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ π ∈ ℝ) ∧ (0 ∈ ℝ ∧ π ∈ ℝ)) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
119, 8, 10mpanr12 439 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
128, 11mpan2 425 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
137, 12bitr4id 199 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π)))
141, 13syl 14 . . . . 5 (𝐴 ∈ (π(,)(2 · π)) → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π)))
1514ibi 176 . . . 4 (𝐴 ∈ (π(,)(2 · π)) → (𝐴 − π) ∈ (0(,)π))
16 sinq12gt0 15302 . . . 4 ((𝐴 − π) ∈ (0(,)π) → 0 < (sin‘(𝐴 − π)))
1715, 16syl 14 . . 3 (𝐴 ∈ (π(,)(2 · π)) → 0 < (sin‘(𝐴 − π)))
181recnd 8101 . . . 4 (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℂ)
19 sinmpi 15287 . . . 4 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
2018, 19syl 14 . . 3 (𝐴 ∈ (π(,)(2 · π)) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
2117, 20breqtrd 4070 . 2 (𝐴 ∈ (π(,)(2 · π)) → 0 < -(sin‘𝐴))
221resincld 12034 . . 3 (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) ∈ ℝ)
2322lt0neg1d 8588 . 2 (𝐴 ∈ (π(,)(2 · π)) → ((sin‘𝐴) < 0 ↔ 0 < -(sin‘𝐴)))
2421, 23mpbird 167 1 (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925   + caddc 7928   · cmul 7930   < clt 8107  cmin 8243  -cneg 8244  2c2 9087  (,)cioo 10010  sincsin 11955  πcpi 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  cosq23lt0  15305
  Copyright terms: Public domain W3C validator