| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinq34lt0t | GIF version | ||
| Description: The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
| Ref | Expression |
|---|---|
| sinq34lt0t | ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 10034 | . . . . . 6 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℝ) | |
| 2 | picn 15259 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
| 3 | 2 | addlidi 8215 | . . . . . . . . . 10 ⊢ (0 + π) = π |
| 4 | 3 | eqcomi 2209 | . . . . . . . . 9 ⊢ π = (0 + π) |
| 5 | 2 | 2timesi 9166 | . . . . . . . . 9 ⊢ (2 · π) = (π + π) |
| 6 | 4, 5 | oveq12i 5956 | . . . . . . . 8 ⊢ (π(,)(2 · π)) = ((0 + π)(,)(π + π)) |
| 7 | 6 | eleq2i 2272 | . . . . . . 7 ⊢ (𝐴 ∈ (π(,)(2 · π)) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))) |
| 8 | pire 15258 | . . . . . . . 8 ⊢ π ∈ ℝ | |
| 9 | 0re 8072 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 10 | iooshf 10074 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ π ∈ ℝ) ∧ (0 ∈ ℝ ∧ π ∈ ℝ)) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) | |
| 11 | 9, 8, 10 | mpanr12 439 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
| 12 | 8, 11 | mpan2 425 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
| 13 | 7, 12 | bitr4id 199 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
| 14 | 1, 13 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
| 15 | 14 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 − π) ∈ (0(,)π)) |
| 16 | sinq12gt0 15302 | . . . 4 ⊢ ((𝐴 − π) ∈ (0(,)π) → 0 < (sin‘(𝐴 − π))) | |
| 17 | 15, 16 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < (sin‘(𝐴 − π))) |
| 18 | 1 | recnd 8101 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℂ) |
| 19 | sinmpi 15287 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘(𝐴 − π)) = -(sin‘𝐴)) |
| 21 | 17, 20 | breqtrd 4070 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < -(sin‘𝐴)) |
| 22 | 1 | resincld 12034 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) ∈ ℝ) |
| 23 | 22 | lt0neg1d 8588 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → ((sin‘𝐴) < 0 ↔ 0 < -(sin‘𝐴))) |
| 24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 ℝcr 7924 0cc0 7925 + caddc 7928 · cmul 7930 < clt 8107 − cmin 8243 -cneg 8244 2c2 9087 (,)cioo 10010 sincsin 11955 πcpi 11958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 ax-pre-suploc 8046 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-disj 4022 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-map 6737 df-pm 6738 df-en 6828 df-dom 6829 df-fin 6830 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-ioo 10014 df-ioc 10015 df-ico 10016 df-icc 10017 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-fac 10871 df-bc 10893 df-ihash 10921 df-shft 11126 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 df-ef 11959 df-sin 11961 df-cos 11962 df-pi 11964 df-rest 13073 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 df-ntr 14568 df-cn 14660 df-cnp 14661 df-tx 14725 df-cncf 15043 df-limced 15128 df-dvap 15129 |
| This theorem is referenced by: cosq23lt0 15305 |
| Copyright terms: Public domain | W3C validator |