![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sinq34lt0t | GIF version |
Description: The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
Ref | Expression |
---|---|
sinq34lt0t | ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9911 | . . . . . 6 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℝ) | |
2 | picn 14144 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
3 | 2 | addid2i 8099 | . . . . . . . . . 10 ⊢ (0 + π) = π |
4 | 3 | eqcomi 2181 | . . . . . . . . 9 ⊢ π = (0 + π) |
5 | 2 | 2timesi 9048 | . . . . . . . . 9 ⊢ (2 · π) = (π + π) |
6 | 4, 5 | oveq12i 5886 | . . . . . . . 8 ⊢ (π(,)(2 · π)) = ((0 + π)(,)(π + π)) |
7 | 6 | eleq2i 2244 | . . . . . . 7 ⊢ (𝐴 ∈ (π(,)(2 · π)) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))) |
8 | pire 14143 | . . . . . . . 8 ⊢ π ∈ ℝ | |
9 | 0re 7956 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
10 | iooshf 9951 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ π ∈ ℝ) ∧ (0 ∈ ℝ ∧ π ∈ ℝ)) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) | |
11 | 9, 8, 10 | mpanr12 439 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
12 | 8, 11 | mpan2 425 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))) |
13 | 7, 12 | bitr4id 199 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
14 | 1, 13 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π))) |
15 | 14 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (𝐴 − π) ∈ (0(,)π)) |
16 | sinq12gt0 14187 | . . . 4 ⊢ ((𝐴 − π) ∈ (0(,)π) → 0 < (sin‘(𝐴 − π))) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < (sin‘(𝐴 − π))) |
18 | 1 | recnd 7985 | . . . 4 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℂ) |
19 | sinmpi 14172 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | |
20 | 18, 19 | syl 14 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘(𝐴 − π)) = -(sin‘𝐴)) |
21 | 17, 20 | breqtrd 4029 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → 0 < -(sin‘𝐴)) |
22 | 1 | resincld 11730 | . . 3 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) ∈ ℝ) |
23 | 22 | lt0neg1d 8471 | . 2 ⊢ (𝐴 ∈ (π(,)(2 · π)) → ((sin‘𝐴) < 0 ↔ 0 < -(sin‘𝐴))) |
24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4003 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 ℝcr 7809 0cc0 7810 + caddc 7813 · cmul 7815 < clt 7991 − cmin 8127 -cneg 8128 2c2 8969 (,)cioo 9887 sincsin 11651 πcpi 11654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 ax-pre-suploc 7931 ax-addf 7932 ax-mulf 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-disj 3981 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-isom 5225 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-of 6082 df-1st 6140 df-2nd 6141 df-recs 6305 df-irdg 6370 df-frec 6391 df-1o 6416 df-oadd 6420 df-er 6534 df-map 6649 df-pm 6650 df-en 6740 df-dom 6741 df-fin 6742 df-sup 6982 df-inf 6983 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-2 8977 df-3 8978 df-4 8979 df-5 8980 df-6 8981 df-7 8982 df-8 8983 df-9 8984 df-n0 9176 df-z 9253 df-uz 9528 df-q 9619 df-rp 9653 df-xneg 9771 df-xadd 9772 df-ioo 9891 df-ioc 9892 df-ico 9893 df-icc 9894 df-fz 10008 df-fzo 10142 df-seqfrec 10445 df-exp 10519 df-fac 10705 df-bc 10727 df-ihash 10755 df-shft 10823 df-cj 10850 df-re 10851 df-im 10852 df-rsqrt 11006 df-abs 11007 df-clim 11286 df-sumdc 11361 df-ef 11655 df-sin 11657 df-cos 11658 df-pi 11660 df-rest 12689 df-topgen 12708 df-psmet 13383 df-xmet 13384 df-met 13385 df-bl 13386 df-mopn 13387 df-top 13434 df-topon 13447 df-bases 13479 df-ntr 13532 df-cn 13624 df-cnp 13625 df-tx 13689 df-cncf 13994 df-limced 14061 df-dvap 14062 |
This theorem is referenced by: cosq23lt0 14190 |
Copyright terms: Public domain | W3C validator |