ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul1c GIF version

Theorem nummul1c 9370
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul1c.8 ((𝐴 · 𝑃) + 𝐸) = 𝐶
nummul1c.9 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul1c (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 9334 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2239 . . 3 𝑁 ∈ ℕ0
7 nummul1c.2 . . 3 𝑃 ∈ ℕ0
86, 7num0u 9332 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
9 0nn0 9129 . . 3 0 ∈ ℕ0
102, 9num0h 9333 . . 3 0 = ((𝑇 · 0) + 0)
11 nummul1c.6 . . 3 𝐷 ∈ ℕ0
12 nummul1c.7 . . 3 𝐸 ∈ ℕ0
1312nn0cni 9126 . . . . . 6 𝐸 ∈ ℂ
1413addid2i 8041 . . . . 5 (0 + 𝐸) = 𝐸
1514oveq2i 5853 . . . 4 ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸)
16 nummul1c.8 . . . 4 ((𝐴 · 𝑃) + 𝐸) = 𝐶
1715, 16eqtri 2186 . . 3 ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶
184, 7num0u 9332 . . . 4 (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0)
19 nummul1c.9 . . . 4 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
2018, 19eqtr3i 2188 . . 3 ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 9366 . 2 ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷)
228, 21eqtri 2186 1 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  (class class class)co 5842  0cc0 7753   + caddc 7756   · cmul 7758  0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-inn 8858  df-n0 9115
This theorem is referenced by:  nummul2c  9371  decmul1  9385  decmul1c  9386
  Copyright terms: Public domain W3C validator