| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nummul1c | GIF version | ||
| Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
| nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
| nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
| nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
| nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
| nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
| nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
| nummul1c.8 | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
| nummul1c.9 | ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
| Ref | Expression |
|---|---|
| nummul1c | ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | 2, 3, 4 | numcl 9529 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
| 6 | 1, 5 | eqeltri 2279 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
| 7 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | 6, 7 | num0u 9527 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
| 9 | 0nn0 9323 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 10 | 2, 9 | num0h 9528 | . . 3 ⊢ 0 = ((𝑇 · 0) + 0) |
| 11 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 13 | 12 | nn0cni 9320 | . . . . . 6 ⊢ 𝐸 ∈ ℂ |
| 14 | 13 | addlidi 8228 | . . . . 5 ⊢ (0 + 𝐸) = 𝐸 |
| 15 | 14 | oveq2i 5965 | . . . 4 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸) |
| 16 | nummul1c.8 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
| 17 | 15, 16 | eqtri 2227 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶 |
| 18 | 4, 7 | num0u 9527 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0) |
| 19 | nummul1c.9 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | |
| 20 | 18, 19 | eqtr3i 2229 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷) |
| 21 | 2, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20 | nummac 9561 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷) |
| 22 | 8, 21 | eqtri 2227 | 1 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5954 0cc0 7938 + caddc 7941 · cmul 7943 ℕ0cn0 9308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sub 8258 df-inn 9050 df-n0 9309 |
| This theorem is referenced by: nummul2c 9566 decmul1 9580 decmul1c 9581 |
| Copyright terms: Public domain | W3C validator |