| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nummul1c | GIF version | ||
| Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 | 
| nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 | 
| nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 | 
| nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 | 
| nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | 
| nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 | 
| nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 | 
| nummul1c.8 | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | 
| nummul1c.9 | ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | 
| Ref | Expression | 
|---|---|
| nummul1c | ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | 2, 3, 4 | numcl 9469 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 | 
| 6 | 1, 5 | eqeltri 2269 | . . 3 ⊢ 𝑁 ∈ ℕ0 | 
| 7 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | 6, 7 | num0u 9467 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) | 
| 9 | 0nn0 9264 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 10 | 2, 9 | num0h 9468 | . . 3 ⊢ 0 = ((𝑇 · 0) + 0) | 
| 11 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 13 | 12 | nn0cni 9261 | . . . . . 6 ⊢ 𝐸 ∈ ℂ | 
| 14 | 13 | addlidi 8169 | . . . . 5 ⊢ (0 + 𝐸) = 𝐸 | 
| 15 | 14 | oveq2i 5933 | . . . 4 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸) | 
| 16 | nummul1c.8 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
| 17 | 15, 16 | eqtri 2217 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶 | 
| 18 | 4, 7 | num0u 9467 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0) | 
| 19 | nummul1c.9 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | |
| 20 | 18, 19 | eqtr3i 2219 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷) | 
| 21 | 2, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20 | nummac 9501 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷) | 
| 22 | 8, 21 | eqtri 2217 | 1 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 0cc0 7879 + caddc 7882 · cmul 7884 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: nummul2c 9506 decmul1 9520 decmul1c 9521 | 
| Copyright terms: Public domain | W3C validator |