| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz0tp | GIF version | ||
| Description: An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| fz0tp | ⊢ (0...2) = {0, 1, 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9127 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 2 | 1 | addlidi 8235 | . . . 4 ⊢ (0 + 2) = 2 |
| 3 | 2 | eqcomi 2210 | . . 3 ⊢ 2 = (0 + 2) |
| 4 | 3 | oveq2i 5968 | . 2 ⊢ (0...2) = (0...(0 + 2)) |
| 5 | 0z 9403 | . . 3 ⊢ 0 ∈ ℤ | |
| 6 | fztp 10220 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, (0 + 1), (0 + 2)} |
| 8 | eqid 2206 | . . 3 ⊢ 0 = 0 | |
| 9 | id 19 | . . . 4 ⊢ (0 = 0 → 0 = 0) | |
| 10 | 0p1e1 9170 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 11 | 10 | a1i 9 | . . . 4 ⊢ (0 = 0 → (0 + 1) = 1) |
| 12 | 2 | a1i 9 | . . . 4 ⊢ (0 = 0 → (0 + 2) = 2) |
| 13 | 9, 11, 12 | tpeq123d 3730 | . . 3 ⊢ (0 = 0 → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
| 14 | 8, 13 | ax-mp 5 | . 2 ⊢ {0, (0 + 1), (0 + 2)} = {0, 1, 2} |
| 15 | 4, 7, 14 | 3eqtri 2231 | 1 ⊢ (0...2) = {0, 1, 2} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {ctp 3640 (class class class)co 5957 0cc0 7945 1c1 7946 + caddc 7948 2c2 9107 ℤcz 9392 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |