ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0tp GIF version

Theorem fz0tp 10139
Description: An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
fz0tp (0...2) = {0, 1, 2}

Proof of Theorem fz0tp
StepHypRef Expression
1 2cn 9007 . . . . 5 2 ∈ ℂ
21addid2i 8117 . . . 4 (0 + 2) = 2
32eqcomi 2192 . . 3 2 = (0 + 2)
43oveq2i 5901 . 2 (0...2) = (0...(0 + 2))
5 0z 9281 . . 3 0 ∈ ℤ
6 fztp 10095 . . 3 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
75, 6ax-mp 5 . 2 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
8 eqid 2188 . . 3 0 = 0
9 id 19 . . . 4 (0 = 0 → 0 = 0)
10 0p1e1 9050 . . . . 5 (0 + 1) = 1
1110a1i 9 . . . 4 (0 = 0 → (0 + 1) = 1)
122a1i 9 . . . 4 (0 = 0 → (0 + 2) = 2)
139, 11, 12tpeq123d 3698 . . 3 (0 = 0 → {0, (0 + 1), (0 + 2)} = {0, 1, 2})
148, 13ax-mp 5 . 2 {0, (0 + 1), (0 + 2)} = {0, 1, 2}
154, 7, 143eqtri 2213 1 (0...2) = {0, 1, 2}
Colors of variables: wff set class
Syntax hints:   = wceq 1363  wcel 2159  {ctp 3608  (class class class)co 5890  0cc0 7828  1c1 7829   + caddc 7831  2c2 8987  cz 9270  ...cfz 10025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-tp 3614  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-2 8995  df-n0 9194  df-z 9271  df-uz 9546  df-fz 10026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator