ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0tp GIF version

Theorem fz0tp 10154
Description: An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
fz0tp (0...2) = {0, 1, 2}

Proof of Theorem fz0tp
StepHypRef Expression
1 2cn 9021 . . . . 5 2 ∈ ℂ
21addid2i 8131 . . . 4 (0 + 2) = 2
32eqcomi 2193 . . 3 2 = (0 + 2)
43oveq2i 5908 . 2 (0...2) = (0...(0 + 2))
5 0z 9295 . . 3 0 ∈ ℤ
6 fztp 10110 . . 3 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
75, 6ax-mp 5 . 2 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
8 eqid 2189 . . 3 0 = 0
9 id 19 . . . 4 (0 = 0 → 0 = 0)
10 0p1e1 9064 . . . . 5 (0 + 1) = 1
1110a1i 9 . . . 4 (0 = 0 → (0 + 1) = 1)
122a1i 9 . . . 4 (0 = 0 → (0 + 2) = 2)
139, 11, 12tpeq123d 3699 . . 3 (0 = 0 → {0, (0 + 1), (0 + 2)} = {0, 1, 2})
148, 13ax-mp 5 . 2 {0, (0 + 1), (0 + 2)} = {0, 1, 2}
154, 7, 143eqtri 2214 1 (0...2) = {0, 1, 2}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  {ctp 3609  (class class class)co 5897  0cc0 7842  1c1 7843   + caddc 7845  2c2 9001  cz 9284  ...cfz 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator