Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz0tp | GIF version |
Description: An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
fz0tp | ⊢ (0...2) = {0, 1, 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8928 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 1 | addid2i 8041 | . . . 4 ⊢ (0 + 2) = 2 |
3 | 2 | eqcomi 2169 | . . 3 ⊢ 2 = (0 + 2) |
4 | 3 | oveq2i 5853 | . 2 ⊢ (0...2) = (0...(0 + 2)) |
5 | 0z 9202 | . . 3 ⊢ 0 ∈ ℤ | |
6 | fztp 10013 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, (0 + 1), (0 + 2)} |
8 | eqid 2165 | . . 3 ⊢ 0 = 0 | |
9 | id 19 | . . . 4 ⊢ (0 = 0 → 0 = 0) | |
10 | 0p1e1 8971 | . . . . 5 ⊢ (0 + 1) = 1 | |
11 | 10 | a1i 9 | . . . 4 ⊢ (0 = 0 → (0 + 1) = 1) |
12 | 2 | a1i 9 | . . . 4 ⊢ (0 = 0 → (0 + 2) = 2) |
13 | 9, 11, 12 | tpeq123d 3668 | . . 3 ⊢ (0 = 0 → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
14 | 8, 13 | ax-mp 5 | . 2 ⊢ {0, (0 + 1), (0 + 2)} = {0, 1, 2} |
15 | 4, 7, 14 | 3eqtri 2190 | 1 ⊢ (0...2) = {0, 1, 2} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 {ctp 3578 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 2c2 8908 ℤcz 9191 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |