ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmac GIF version

Theorem decrmac 9358
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmac.f 𝐹 ∈ ℕ0
decrmac.g 𝐺 ∈ ℕ0
decrmac.e ((𝐴 · 𝑃) + 𝐺) = 𝐸
decrmac.2 ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹
Assertion
Ref Expression
decrmac ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmac
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 9111 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 9322 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
8 decrmac.f . 2 𝐹 ∈ ℕ0
9 decrmac.g . 2 𝐺 ∈ ℕ0
109nn0cni 9108 . . . . 5 𝐺 ∈ ℂ
1110addid2i 8023 . . . 4 (0 + 𝐺) = 𝐺
1211oveq2i 5838 . . 3 ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺)
13 decrmac.e . . 3 ((𝐴 · 𝑃) + 𝐺) = 𝐸
1412, 13eqtri 2178 . 2 ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸
15 decrmac.2 . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹
161, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15decmac 9352 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  (class class class)co 5827  0cc0 7735   + caddc 7738   · cmul 7740  0cn0 9096  cdc 9301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4029  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-iota 5138  df-fun 5175  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-sub 8053  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-5 8901  df-6 8902  df-7 8903  df-8 8904  df-9 8905  df-n0 9097  df-dec 9302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator