| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decrmac | GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
| decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
| decrmac.f | ⊢ 𝐹 ∈ ℕ0 |
| decrmac.g | ⊢ 𝐺 ∈ ℕ0 |
| decrmac.e | ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 |
| decrmac.2 | ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 |
| Ref | Expression |
|---|---|
| decrmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 9330 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 9545 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | decrmac.f | . 2 ⊢ 𝐹 ∈ ℕ0 | |
| 9 | decrmac.g | . 2 ⊢ 𝐺 ∈ ℕ0 | |
| 10 | 9 | nn0cni 9327 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
| 11 | 10 | addlidi 8235 | . . . 4 ⊢ (0 + 𝐺) = 𝐺 |
| 12 | 11 | oveq2i 5968 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺) |
| 13 | decrmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 | |
| 14 | 12, 13 | eqtri 2227 | . 2 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸 |
| 15 | decrmac.2 | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | decmac 9575 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5957 0cc0 7945 + caddc 7948 · cmul 7950 ℕ0cn0 9315 ;cdc 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-dec 9525 |
| This theorem is referenced by: 2exp16 12835 |
| Copyright terms: Public domain | W3C validator |