Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decrmac | GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
Ref | Expression |
---|---|
decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
decrmac.f | ⊢ 𝐹 ∈ ℕ0 |
decrmac.g | ⊢ 𝐺 ∈ ℕ0 |
decrmac.e | ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 |
decrmac.2 | ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 |
Ref | Expression |
---|---|
decrmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 9111 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 9322 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
8 | decrmac.f | . 2 ⊢ 𝐹 ∈ ℕ0 | |
9 | decrmac.g | . 2 ⊢ 𝐺 ∈ ℕ0 | |
10 | 9 | nn0cni 9108 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
11 | 10 | addid2i 8023 | . . . 4 ⊢ (0 + 𝐺) = 𝐺 |
12 | 11 | oveq2i 5838 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺) |
13 | decrmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 | |
14 | 12, 13 | eqtri 2178 | . 2 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸 |
15 | decrmac.2 | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | decmac 9352 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5827 0cc0 7735 + caddc 7738 · cmul 7740 ℕ0cn0 9096 ;cdc 9301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-pow 4138 ax-pr 4172 ax-setind 4499 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-addcom 7835 ax-mulcom 7836 ax-addass 7837 ax-mulass 7838 ax-distr 7839 ax-i2m1 7840 ax-1rid 7842 ax-0id 7843 ax-rnegex 7844 ax-cnre 7846 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4029 df-id 4256 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-iota 5138 df-fun 5175 df-fv 5181 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-sub 8053 df-inn 8840 df-2 8898 df-3 8899 df-4 8900 df-5 8901 df-6 8902 df-7 8903 df-8 8904 df-9 8905 df-n0 9097 df-dec 9302 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |