Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > num0h | GIF version |
Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numnncl.1 | โข ๐ โ โ0 |
numnncl.2 | โข ๐ด โ โ0 |
Ref | Expression |
---|---|
num0h | โข ๐ด = ((๐ ยท 0) + ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numnncl.1 | . . . . 5 โข ๐ โ โ0 | |
2 | 1 | nn0cni 9159 | . . . 4 โข ๐ โ โ |
3 | 2 | mul01i 8322 | . . 3 โข (๐ ยท 0) = 0 |
4 | 3 | oveq1i 5875 | . 2 โข ((๐ ยท 0) + ๐ด) = (0 + ๐ด) |
5 | numnncl.2 | . . . 4 โข ๐ด โ โ0 | |
6 | 5 | nn0cni 9159 | . . 3 โข ๐ด โ โ |
7 | 6 | addid2i 8074 | . 2 โข (0 + ๐ด) = ๐ด |
8 | 4, 7 | eqtr2i 2197 | 1 โข ๐ด = ((๐ ยท 0) + ๐ด) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 โ wcel 2146 (class class class)co 5865 0cc0 7786 + caddc 7789 ยท cmul 7791 โ0cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-inn 8891 df-n0 9148 |
This theorem is referenced by: dec0h 9376 numlti 9391 nummul1c 9403 |
Copyright terms: Public domain | W3C validator |