![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq0 | GIF version |
Description: A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negeq0 | ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7951 | . . 3 ⊢ 0 ∈ ℂ | |
2 | neg11 8210 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝐴 = -0 ↔ 𝐴 = 0)) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (-𝐴 = -0 ↔ 𝐴 = 0)) |
4 | neg0 8205 | . . 3 ⊢ -0 = 0 | |
5 | 4 | eqeq2i 2188 | . 2 ⊢ (-𝐴 = -0 ↔ -𝐴 = 0) |
6 | 3, 5 | bitr3di 195 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ℂcc 7811 0cc0 7813 -cneg 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-neg 8133 |
This theorem is referenced by: negne0bi 8232 negeq0d 8262 mulgnegnn 12998 |
Copyright terms: Public domain | W3C validator |