Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeq0 | GIF version |
Description: A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negeq0 | ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7891 | . . 3 ⊢ 0 ∈ ℂ | |
2 | neg11 8149 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝐴 = -0 ↔ 𝐴 = 0)) | |
3 | 1, 2 | mpan2 422 | . 2 ⊢ (𝐴 ∈ ℂ → (-𝐴 = -0 ↔ 𝐴 = 0)) |
4 | neg0 8144 | . . 3 ⊢ -0 = 0 | |
5 | 4 | eqeq2i 2176 | . 2 ⊢ (-𝐴 = -0 ↔ -𝐴 = 0) |
6 | 3, 5 | bitr3di 194 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ℂcc 7751 0cc0 7753 -cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 |
This theorem is referenced by: negne0bi 8171 negeq0d 8201 |
Copyright terms: Public domain | W3C validator |