ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenegsq GIF version

Theorem lenegsq 11521
Description: Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
lenegsq ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))

Proof of Theorem lenegsq
StepHypRef Expression
1 recn 8093 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 abscl 11477 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
3 absge0 11486 . . . . . 6 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
42, 3jca 306 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
51, 4syl 14 . . . 4 (𝐴 ∈ ℝ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
6 le2sq 10796 . . . 4 ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ((abs‘𝐴)↑2) ≤ (𝐵↑2)))
75, 6sylan 283 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ((abs‘𝐴)↑2) ≤ (𝐵↑2)))
8 absle 11515 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
9 lenegcon1 8574 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
109anbi1d 465 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
11 ancom 266 . . . . . 6 ((-𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ -𝐴𝐵))
1210, 11bitr3di 195 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
138, 12bitrd 188 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
1413adantrr 479 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
15 absresq 11504 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
1615breq1d 4069 . . . 4 (𝐴 ∈ ℝ → (((abs‘𝐴)↑2) ≤ (𝐵↑2) ↔ (𝐴↑2) ≤ (𝐵↑2)))
1716adantr 276 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((abs‘𝐴)↑2) ≤ (𝐵↑2) ↔ (𝐴↑2) ≤ (𝐵↑2)))
187, 14, 173bitr3d 218 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
19183impb 1202 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2178   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  cle 8143  -cneg 8279  2c2 9122  cexp 10720  abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  sinbnd  12178  cosbnd  12179  4sqlem7  12822
  Copyright terms: Public domain W3C validator