| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crap0 | GIF version | ||
| Description: The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.) |
| Ref | Expression |
|---|---|
| crap0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8085 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | apreim 8689 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0))) | |
| 3 | 1, 1, 2 | mpanr12 439 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0))) |
| 4 | ax-icn 8033 | . . . . . 6 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 8476 | . . . . 5 ⊢ (i · 0) = 0 |
| 6 | 5 | oveq2i 5965 | . . . 4 ⊢ (0 + (i · 0)) = (0 + 0) |
| 7 | 00id 8226 | . . . 4 ⊢ (0 + 0) = 0 | |
| 8 | 6, 7 | eqtri 2227 | . . 3 ⊢ (0 + (i · 0)) = 0 |
| 9 | 8 | breq2i 4056 | . 2 ⊢ ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 + (i · 𝐵)) # 0) |
| 10 | 3, 9 | bitr3di 195 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 0cc0 7938 ici 7940 + caddc 7941 · cmul 7943 # cap 8667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 |
| This theorem is referenced by: abs00ap 11423 |
| Copyright terms: Public domain | W3C validator |