ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex GIF version

Theorem brrelex 4681
Description: A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Proof of Theorem brrelex
StepHypRef Expression
1 brrelex12 4679 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 112 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160  Vcvv 2752   class class class wbr 4018  Rel wrel 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648
This theorem is referenced by:  releldm  4877  relelrn  4878  funmo  5246  ertr  6568
  Copyright terms: Public domain W3C validator